5 results for group: michael-masters


Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering

Ilsa B. Kantola, Elena Blanc-Betes, Michael D. Masters, Elliot Chang, Alison Marklein, Caitlin E. Moore, Adam von Haden, Carl J. Bernacchi, Adam Wolf, Dimitar Z. Epihov, David J. Beerling, Evan H. DeLucia Abstract Terrestrial enhanced weathering (EW) through the application of Mg- or Ca- rich rock dust to soil is a negative emission technology with the potential to address impacts of climate change. The effectiveness of EW was tested over 4 years by spreading ground basalt (50 t ha−1 year−1) on maize/soybean and miscanthus cropping systems in the Midwest US. The major elements of the carbon budget were quantified through ...

Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits

David J. Beerling, Dimitar Z. Epihov, Ilsa B. Kantola, Michael D. Masters, Tom Reershemius, Noah J. Planavsky, Christopher T. Reinhard, Jacob S. Jordan, Sarah J. Thorne1, James Weber, Maria Val Martin, Robert P. Freckleton, Sue E. Hartley, Rachael H. James, Christopher R. Pearce, Evan H. DeLucia, Steven A. Banwart Abstract Enhanced weathering (EW) with crushed basalt on farmlands is a promising scalable atmospheric carbon dioxide removal strategy that urgently requires performance assessment with commercial farming practices. Our large-scale replicated EW field trial in the heart of the U.S. Corn Belt shows cumulative time integrated carbon ...

Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

Kantola, I. B., Masters, M. D., Wolz, K. J., DeLucia, E. H. Abstract Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byprod...

Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering

Amy L.Lewis, Binoy Sarkar, Peter Wadea, Simon J.Kemp, Mark E.Hodson, Lyla L.Taylor, Kok Loong Yeong, Kalu Davies, Paul N.Nelson, Michael I.Bird, Ilsa B.Kantola, Michael D.Masters, Evan DeLucia, Jonathan R.Leake, Steven A.Banwart, David J.Beerling Abstract Mafic igneous rocks, such as basalt, are composed of abundant calcium- and magnesium-rich silicate minerals widely proposed to be suitable for scalable carbon dioxide removal (CDR) by enhanced rock weathering (ERW). Here, we report a detailed characterization of the mineralogy, chemistry, particle size and surface area of six mined basalts being used in large-scale ERW field trials. We use 1-D ...

Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering

Ilsa B. Kantola, Michael D. Masters, David J. Beerling, Stephen P. Long and Evan H. DeLucia Abstract Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils—applying crushed silicate rock as a soil amendment—is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and ...