Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits
David J. Beerling, Dimitar Z. Epihov, Ilsa B. Kantola, Michael D. Masters, Tom Reershemius, Noah J. Planavsky, Christopher T. Reinhard, Jacob S. Jordan, Sarah J. Thorne1, James Weber, Maria Val Martin, Robert P. Freckleton, Sue E. Hartley, Rachael H. James, Christopher R. Pearce, Evan H. DeLucia, Steven A. Banwart
Abstract
Enhanced weathering (EW) with crushed basalt on farmlands is a promising
scalable atmospheric carbon dioxide removal strategy that urgently requires
performance assessment with commercial farming practices. Our large-scale
replicated EW field trial in the heart of the U.S. Corn Belt shows cumulative time integrated carbon sequestration of 15.4 ± 4.1 t CO2 ha-1 over four years, with additional emissions mitigation of ~0.1 – 0.4 t CO2,e ha-1 yr-1 for soil nitrous oxide, a potent long-lived greenhouse gas. Maize and soybean yields increased 12-16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals and global food and soil security.
Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits