104 results for group: carbon-sequestration-1


Remineralizing soils? The agricultural usage of silicate rock powders: A review

Philipp Swoboda Thomas F.Döring Martin Hamer Abstract Soil nutrient depletion threatens global food security and has been seriously underestimated for potassium (K) and several micronutrients. This is particularly the case for highly weathered soils in tropical countries, where classical soluble fertilizers are often not affordable or not accessible. One way to replenish macro- and micronutrients are ground silicate rock powders (SRPs). Rock forming silicate minerals contain most nutrients essential for higher plants, yet slow and inconsistent weathering rates have restricted their use in the past. Recent findings, however, challenge past ...

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Lyla L. Taylor, Joe Quirk, Rachel M. S. Thorley, Pushker A. Kharecha, James Hansen, Andy Ridgwell, Mark R. Lomas, Steve A. Banwart & David J. Beerling Abstract Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions . We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 ...

On life-cycle sustainability optimization of enhanced weathering systems

Raymond R.Tan, Kathleen B.Aviso Abstract Enhanced weathering is a simple and scalable negative emissions technology with an estimated carbon dioxide removal potential of multiple gigatons per year. To date, the only life-cycle assessment of enhanced weathering was published by Lefebvre et al. (2019) in this journal. They estimated the carbon dioxide removal potential in Sao Paolo State in Brazil to be 1.3e2.4 Mt/y, examined the penalty from transportation greenhouse gas emissions, and pointed out that using life-cycle assessment can give more reliable estimates of climate change mitigation potential of enhanced weathering systems. In this ...

Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon

C.-L.Washbourne, P.Renforth, D.A.C.Manninga Abstract This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban ...

Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil

David Lefebvre, Pietro Goglio, Adrian Williams, David A.C.Manning, Antonio Carlosde Azevedo, Magda Bergmann, Jeroen Meersmans, Pete Smith Abstract Enhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Parana Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this ...

Rock dust, crop nutrition and climate change

Soils are the interface between the geosphere and the biosphere. They provide the minerals required for crop nutrition, and they regulate atmospheric CO2 to a greater extent than the ocean. These functions are often treated separately, with studies focusing on either crop nutrition or on soil organic carbon. The use of silicate rocks as remineralizers addresses both functions. Weathering releases nutrients, including silica, for crop growth, and consumes atmospheric CO2, generating bicarbonate in solution. If enough Ca is released, and with sufficient bicarbonate in solution, pedogenic calcite forms as a permanent sink for atmospheric CO2. ...

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

David J. Beerling, Euripides P. Kantzas, Mark R. Lomas, Peter Wade, Rafael M. Eufrasio, Phil Renforth, Binoy Sarkar, M. Grace Andrews, Rachael H. James, Christopher R. Pearce, Jean-Francois Mercure, Hector Pollitt, Philip B. Holden, Neil R. Edwards, Madhu Khanna, Lenny Koh, Shaun Quegan, Nick F. Pidgeon, Ivan A. Janssens, James Hansen & Steven A. Banwart Abstract Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and ...

Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock

Daniel S. Goll, Philippe Ciais, Thorben Amann, Wolfgang Buermann, Jinfeng Chang, Sibel Eker, Jens Hartmann, Ivan Janssens, Wei Li, Michael Obersteiner, Josep Penuelas, Katsumasa Tanaka & Sara Vicca Abstract Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes ...

Potential and costs of carbon dioxide removal by enhanced weathering of rocks

Jessica Strefler, Thorben Amann, Nico Bauer, Elmar Kriegler and Jens Hartmann Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The ...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Mike E. Kelland, Peter W. Wade, Amy L. Lewis, Lyla L. Taylor, Binoy Sarkar, M. Grace Andrews, Mark R. Lomas, T. E. Anne Cotton, Simon J. Kemp, Rachael H. James, Christopher R. Pearce, Sue E. Hartley, Mark E. Hodson, Jonathan R. Leake, Steven A. Banwart, David J. Beerling Abstract Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential ...