197 results for group: agriculture-1


Soil Health and Related Ecosystem Services in Organic Agriculture

Lynette Abbott, David Manning Abstract Soil health is dependent upon complex bio-physical and bio-chemical processes which interact in space and time. Microrganisms and fauna in soil comprise highly diverse and dynamic communities that contribute, over either short or long time frames, to the transformation of geological minerals and release of essential nutrients for plant growth. Certified organic soil management practices generally restrict the use of chemically-processed highly soluble plant nutrients, leading to dependence on nutrient sources that require microbial transformation of poorly soluble geological minerals. Consequently, ...

Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil

David Lefebvre, Pietro Goglio, Adrian Williams, David A.C.Manning, Antonio Carlosde Azevedo, Magda Bergmann, Jeroen Meersmans, Pete Smith Abstract Enhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Parana Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this ...

Rock dust, crop nutrition and climate change

Soils are the interface between the geosphere and the biosphere. They provide the minerals required for crop nutrition, and they regulate atmospheric CO2 to a greater extent than the ocean. These functions are often treated separately, with studies focusing on either crop nutrition or on soil organic carbon. The use of silicate rocks as remineralizers addresses both functions. Weathering releases nutrients, including silica, for crop growth, and consumes atmospheric CO2, generating bicarbonate in solution. If enough Ca is released, and with sufficient bicarbonate in solution, pedogenic calcite forms as a permanent sink for atmospheric CO2. ...

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

David J. Beerling, Euripides P. Kantzas, Mark R. Lomas, Peter Wade, Rafael M. Eufrasio, Phil Renforth, Binoy Sarkar, M. Grace Andrews, Rachael H. James, Christopher R. Pearce, Jean-Francois Mercure, Hector Pollitt, Philip B. Holden, Neil R. Edwards, Madhu Khanna, Lenny Koh, Shaun Quegan, Nick F. Pidgeon, Ivan A. Janssens, James Hansen & Steven A. Banwart Abstract Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and ...

Potential and costs of carbon dioxide removal by enhanced weathering of rocks

Jessica Strefler, Thorben Amann, Nico Bauer, Elmar Kriegler and Jens Hartmann Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The ...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Mike E. Kelland, Peter W. Wade, Amy L. Lewis, Lyla L. Taylor, Binoy Sarkar, M. Grace Andrews, Mark R. Lomas, T. E. Anne Cotton, Simon J. Kemp, Rachael H. James, Christopher R. Pearce, Sue E. Hartley, Mark E. Hodson, Jonathan R. Leake, Steven A. Banwart, David J. Beerling Abstract Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential ...

How will minerals feed the world in 2050?

David A.C.Manning Abstract By 2050, the world’s population will have reached 9 billion. To feed that many people, soil fertility will have to be maintained artificially. All fertiliser materials depend on a geological resource: nitrogen (N) fertilizer production needs fossil fuels, and both phosphate (P) and potassium (K) are derived by mining. Irrespective of new biological techniques in plant breeding and genetic modification, soils still need to supply the mineral nutrients that plants require, and these are exported from soil with every harvest. Studies of global offtake of N, P and K from soils through crop production show that ...

ENHANCED CHEMICAL WEATHERING AS A GEOENGINEERING STRATEGY TO REDUCE ATMOSPHERIC CARBON DIOXIDE, SUPPLY NUTRIENTS, AND MITIGATE OCEAN ACIDIFICATION

Jens Hartmann, A. Joshua West, Phil Renforth, Peter Köhler, Christina L. De La Rocha, Dieter A. Wolf-Gladrow, Hans H. Dürr, Jürgen Scheffran Abstract Chemical weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the terrestrial chemical cycles and land-ocean flux of major elements, although the extent remains difficult to quantify. When deployed on a grand scale, Enhanced Weathering (a form of mineral fertilization), ...

Effect of rock dust-amended compost on the soil properties, soil microbial activity, and fruit production in an apple orchard from the Jiangsu province of China

Jiangang Li, Dmitri V. Mavrodi and Yuanhua Dong Abstract This study examined the effect of compost fortified with rock dust on the soil properties, soil microbial activity, and yield and fruit quality in a mature apple orchard from the Jiangsu province of China. The incor-poration of rock dust significantly improved the microelement contents of Ca, Mg, Fe, Mn, Zn, B, and Al, but without increasing phytotoxicity of the compost. The fortified compost had higher metabolic activity and functional diversity of microorganisms as determined by the community-level physiological profiling with Biolog EcoPlates. The two-year incorporation of the ...

Historical and technical developments of potassium resources

Davide Ciceri, David A.C.Manning, Antoine Allanore Abstract The mining of soluble potassium salts (potash) is essential for manufacturing fertilizers required to ensure continuous production of crops and hence global food security. As of 2014, potash is mined predominantly in the northern hemisphere, where large deposits occur. Production tonnage and prices do not take into account the needs of the farmers of the poorest countries. Consequently, soils of some regions of the southern hemisphere are currently being depleted of potassium due to the expansion and intensification of agriculture coupled with the lack of affordable potash. Moving ...