Review of greenhouse gas emissions from crop production systems and fertilizer management effects Author

Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management practices, using principles of ecological intensification to enhance efficient and effective nutrient uptake while achieving high yields, was identified as a principal way to achieve reductions in GHG emissions while meeting production demands. Many studies identified through the review involved measurements of GHG emissions over several weeks to a few months, which greatly limit the ability to accurately determine system-level management effects on net global warming potential. The current science indicates: (1) appropriate fertilizer N use helps increase biomass production necessary to help restore and maintain soil organic carbon (SOC) levels; (2) best management practices (BMPs) for fertilizer N play a large role in minimizing residual soil nitrate, which helps lower the risk of increased nitrous oxide (N2O) emissions; (3) tillage practices that reduce soil disturbance and maintain crop residue on the soil surface can increase SOC levels, but usually only if crop productivity is maintained or increased; (4) differences among fertilizer N sources in N2O emissions depend on site- and weather-specific conditions; and (5) intensive crop management systems do not necessarily increase GHG emissions per unit of crop or food production; they can help spare natural areas from conversion to cropland and allow conversion of selected lands to forests for GHG mitigation, while supplying the world’s need for food, fiber, and biofuel. Transfer of the information to fertilizer dealers, crop advisers, farmers, and agricultural and environmental authorities should lead to increased implementation of fertilizer BMPs, and help to reduce confusion over the role of fertilizer N on cropping system emissions of GHGs. Gaps in scientific understanding were identified and will require the collaborative attention of agronomists, soil scientists, ecologists, and environmental authorities in serving the immediate and long-term interests of the human population.

See: Review of greenhouse gas emissions from crop production systems and fertilizer management effects Author

Print Friendly, PDF & Email

No Replies to "Review of greenhouse gas emissions from crop production systems and fertilizer management effects Author"