Does a rhizospheric microorganism enhance K+ availability in agricultural soils?
Vijay Singh Meena, B.R. Maurya, Jay Prakash Verma
Abstract
The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizesthe insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, Bacillus edaphicus, Bacillus circu-lans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing of fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which shows effective interaction between soil and plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to literature, currently negligible use of potassium fertilizer as a chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not use the K fertilizer due to unawareness so that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers. Therefore, the efficient KSMs should be applied for solubilization of a fixed form of K to an available form of K in the soils. This available K can be easily taken up by the plant for growth and development. Our aim of this review is to elaborate on the studies of indigenous K-solubilizing microbes to develop efficient microbial consortia for solubilization of K in soil which enhances the plant growth and yield of crops. This review highlights the future need for research on potassium (K) in agriculture.
Does a rhizospheric microorganism enhance K+ availability in agricultural soils?