113 results for browsing: Unknown


Global Beiogeochemical Cycles

Anthropogenic nitrogen deposition is widely considered to increase CO2 sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen-carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid-1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2 capture than nitrogen deposition inputs since pre-industrial times. Climate change ...

Remineralizing soils? The agricultural usage of silicate rock powders: A review

Soil nutrient depletion threatens global food security and has been seriously underestimated for potassium (K) and several micronutrients. This is particularly the case for highly weathered soils in tropical countries, where classical soluble fertilizers are often not affordable or not accessible. One way to replenish macro- and micronutrients are ground silicate rock powders (SRPs). Rock forming silicate minerals contain most nutrients essential for higher plants, yet slow and inconsistent weathering rates have restricted their use in the past. Recent findings, however, challenge past agronomic objections which insufficiently addressed the factor...

Testing the ability of plants to access potassium from framework silicate minerals

The availability of K, essential for plant growth, from syenite (a silicate rock in which potassium feldspar is the dominant mineral; N 90 wt%), and phlogopite mica has been demonstrated using carefully designed plant growth pot experiments in which the only added source of K was the mineral of interest, with no loss of nutrients through drainage. Using pure quartz sand as a soil, both growth (increase in diameter) of leek plants and K-content of the plant material showed a dose-dependent positive response to the application (114–43000 mg K/pot) of milled syenite with increases in plant diameter of 0.5–0.7 mm/week, increasing with applic...

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions . We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first...

On life-cycle sustainability optimization of enhanced weathering systems

Enhanced weathering is a simple and scalable negative emissions technology with an estimated carbon dioxide removal potential of multiple gigatons per year. To date, the only life-cycle assessment of enhanced weathering was published by Lefebvre et al. (2019) in this journal. They estimated the carbon dioxide removal potential in Sao Paolo State in Brazil to be 1.3e2.4 Mt/y, examined the penalty from transportation greenhouse gas emissions, and pointed out that using life-cycle assessment can give more reliable estimates of climate change mitigation potential of enhanced weathering systems. In this letter, we discuss the limitations of ...

Solutions for a cultivated planet

Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world’s future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture’s environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on ...

Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon

This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis ...

Persistence of soil organic matter as an ecosystem property

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of ...

Soil Health and Related Ecosystem Services in Organic Agriculture

Soil health is dependent upon complex bio-physical and bio-chemical processes which interact in space and time. Microrganisms and fauna in soil comprise highly diverse and dynamic communities that contribute, over either short or long time frames, to the transformation of geological minerals and release of essential nutrients for plant growth. Certified organic soil management practices generally restrict the use of chemically-processed highly soluble plant nutrients, leading to dependence on nutrient sources that require microbial transformation of poorly soluble geological minerals. Consequently, slow release of nutrients controls their rate ...

Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil

Enhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Parana Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this material, the relative contribution of soil carbonation and enhanced weathering, and the potential carbon dioxide removal of Sao Paulo agricultural land ...