4 results for group: enhanced-weathering


Enhanced silicate weathering accelerates forest carbon sequestration by stimulating the soil mineral carbon pump

ABSTRACT: Enhanced silicate rock weathering (ERW) is an emerging strategy for carbon dioxide removal (CDR) from the atmosphere to mitigate anthropogenic climate change. ERW aims at promoting soil inorganic carbon sequestration by accelerating geochemical weathering processes. Theoretically, ERW may also impact soil organic carbon (SOC), the largest carbon pool in terrestrial ecosystems, but experimental evidence for this is largely lacking. Here, we conducted a 2-year field experiment in tropical rubber plantations in the southeast of China to evaluate the effects of wollastonite powder additions (0, 0.25, and 0.5 kg m−2) on both soil organic ...

Sustainability performance of enhanced weathering across countries

ABSTRACT Enhanced weathering (EW) is a promising negative emission technology involving the application of crushed silicate rocks to croplands for carbon capture. There is limited research about the broad sustainability impacts in rolling out this intervention on a large scale. This research assesses the triple bottom line sustainability of EW in eight top-emitting countries using an extended input-output model. Results indicate that overall sustainability performance of EW is influenced by each country’s environmental and social metrics than the economic. Compared to developed countries (UK, France, Germany, USA), emerging economies (Brazil, ...

Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering

ABSTRACT Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field ...

Additive effects of basalt enhanced weathering and biochar co-application on carbon sequestration, soil nutrient status and plant performance in a mesocosm experiment

ABSTRACT Co-deployment of a portfolio of carbon removal technologies is anticipated in order to remove several gigatons of carbon dioxide from the atmosphere and meet climate targets. However, co-application effects between carbon removal technologies have rarely been examined, despite multiple recent perspectives suggesting potential synergies between basalt enhanced weathering and biochar application. To study the co-application effects of basalt for enhanced weathering and biochar on carbon sequestration, along with related co-benefits and risks, we conducted a fully replicated factorial mesocosm experiment with wheat. Basalt applied alone (74 t ...