7 results for group: mark-r-lomas


Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions . We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first...

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have great ...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal ...

Potential for Large-Scale CO2 Removal via Enhanced Rock Weathering with Croplands

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change1. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification2–4. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius5. China, India, the USA and Brazil have ...

Potential for large-scale CO2 removal via enhanced rock weathering with croplands

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification. Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius. China, India, the USA and Brazil have great potential to ...

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions1,2,3,4,5. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling6,7,8 driven by ensemble Representative Concentration Pathway (RCP) projections of twenty...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m2) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.4%, SE) of the important C4 cereal Sorghum ...