6 results for group: lyla-taylor


Increased carbon capture by a silicate-treated forested watershed affected by acid deposition

Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, David J. Beerling Abstract Meeting internationally agreed-upon climate targets requires carbon dioxide removal (CDR) strategies coupled with an urgent phase-down of fossil fuel emissions. However, the efficacy and wider impacts of CDR are poorly understood. Enhanced rock weathering (ERW) is a land-based CDR strategy requiring large-scale field trials. Here we show that a low 3.44 t ha−1 wollastonite treatment in an 11.8 ha acid-rain-impacted forested watershed in New Hampshire, USA, led to cumulative carbon capture by carbonic acid weathering of 0.025–0.13 t ...

Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom

Euripides P. Kantzas, Maria Val Martin, Mark R. Lomas, Rafael M. Eufrasio, Phil Renforth, Amy L. Lewis, Lyla L. Taylor, Jean-Francois Mecure, Hector Pollitt, Pim V. Vercoulen, Negar Vakilifard, Philip B. Holden, Neil R. Edwards, Lenny Koh, Nick F. Pidgeon, Steven A. Banwart, David J. Beerling Abstract Achieving national targets for net-zero carbon emissions will require atmospheric carbon dioxide removal strategies compatible with rising agricultural production. One possible method for delivering on these goals is enhanced rock weathering, which involves modifying soils with crushed silicate rocks, such as basalt. Here we use dynamic carbon ...

Combating Climate Change Through Enhanced Weathering of Agricultural Soils

M. Grace Andrews, Lyla L. Taylor Abstract Rising levels of atmospheric carbon dioxide (CO2) are driving increases in global temperatures. Enhanced weathering of silicate rocks is a CO2removal technology that could help mitigate anthropogenic climate change. Enhanced weathering adds powdered silicate rock to agricultural lands, accelerating natural chemical weathering, and is expected to rapidly draw down atmospheric CO2. However, differences between enhanced and natural weathering result in significant uncertainties about its potential efficacy. This article summarizes the research into ...

Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development

Lyla L. Taylor, David J. Beerling, Shaun Quegan, Steven A. Banwart Abstract Enhanced weathering (EW) aims to amplify a natural sink for CO2by incorporating powdered silicate rock with high reactive surface area into agricultural soils. The goal is to achieve rapid dissolution of minerals and release of alkalinity with accompanying dissolution of CO2into soils and drainage waters. EW could counteract phosphorus limitation and greenhouse gas(GHG) emissions in tropical soils, and soil acidification, a common agricultural problem studied with numerical process models over several decades. Here, we review the processes leading to soil acidifica...

Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering

Amy L.Lewis, Binoy Sarkar, Peter Wadea, Simon J.Kemp, Mark E.Hodson, Lyla L.Taylor, Kok Loong Yeong, Kalu Davies, Paul N.Nelson, Michael I.Bird, Ilsa B.Kantola, Michael D.Masters, Evan DeLucia, Jonathan R.Leake, Steven A.Banwart, David J.Beerling Abstract Mafic igneous rocks, such as basalt, are composed of abundant calcium- and magnesium-rich silicate minerals widely proposed to be suitable for scalable carbon dioxide removal (CDR) by enhanced rock weathering (ERW). Here, we report a detailed characterization of the mineralogy, chemistry, particle size and surface area of six mined basalts being used in large-scale ERW field trials. We use 1-D ...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Mike E. Kelland, Peter W. Wade, Amy L. Lewis, Lyla L. Taylor, Binoy Sarkar, M. Grace Andrews, Mark R. Lomas, T. E. Anne Cotton, Simon J. Kemp, Rachael H. James, Christopher R. Pearce, Sue E. Hartley, Mark E. Hodson, Jonathan R. Leake, Steven A. Banwart, David J. Beerling Abstract Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits ...