3 results for group: jens-hartmann


Potential and costs of carbon dioxide removal by enhanced weathering of rocks

Jessica Strefler, Thorben Amann, Nico Bauer, Elmar Kriegler and Jens Hartmann Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The ...

ENHANCED CHEMICAL WEATHERING AS A GEOENGINEERING STRATEGY TO REDUCE ATMOSPHERIC CARBON DIOXIDE, SUPPLY NUTRIENTS, AND MITIGATE OCEAN ACIDIFICATION

Jens Hartmann, A. Joshua West, Phil Renforth, Peter Köhler, Christina L. De La Rocha, Dieter A. Wolf-Gladrow, Hans H. Dürr, Jürgen Scheffran Abstract Chemical weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the terrestrial chemical cycles and land-ocean flux of major elements, although the extent remains difficult to quantify. When deployed on a grand scale, Enhanced Weathering (a form of mineral fertilization), ...

Geoengineering potential of artificially enhanced silicate weathering of olivine

Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% ...