4 results for group: james-hansen
Enhanced weathering strategies for stabilizing climate and averting ocean acidification
Lyla L. Taylor, Joe Quirk, Rachel M. S. Thorley, Pushker A. Kharecha, James Hansen, Andy Ridgwell, Mark R. Lomas, Steve A. Banwart & David J. Beerling
Abstract
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions . We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 ...
Potential for large-scale CO2 removal via enhanced rock weathering with croplands
David J. Beerling, Euripides P. Kantzas, Mark R. Lomas, Peter Wade, Rafael M. Eufrasio, Phil Renforth, Binoy Sarkar, M. Grace Andrews, Rachael H. James, Christopher R. Pearce, Jean-Francois Mercure, Hector Pollitt, Philip B. Holden, Neil R. Edwards, Madhu Khanna, Lenny Koh, Shaun Quegan, Nick F. Pidgeon, Ivan A. Janssens, James Hansen & Steven A. Banwart
Abstract
Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change. ERW also has possible co-benefits for improved food and soil security, and ...
Farming with Crops and Rocks to Address Global Climate, Food and Soil Security
David J. Beerling, Jonathan R. Leake, Stephen P. Long, Julie D. Scholes, Jurriaan Ton, Paul N. Nelson, Michael Bird, Euripides Kantzas, Lyla L. Taylor, Binoy Sarkar, Mike Kelland, Evan DeLucia, Ilsa Kantola, Christoph Müller, Greg Rau & James Hansen
Abstract
The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to ...
Farming with crops and rocks to address global climate, food and soil security
David J. Beerling, Jonathan R. Leake, Stephen P. Long, Julie D. Scholes, Jurriaan Ton, Paul N. Nelson, Michael Bird, Euripides Kantzas, Lyla L. Taylor, Binoy Sarkar, Mike Kelland, Evan DeLucia, Ilsa Kantola, Christoph Müller, Greg Rau & James Hansen
Abstract
The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to improve ...