3 results for group: ian-power


Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization

Carlos Paulo, Ian M.Power, Amanda R.Stubbs, Baolin Wang, Nina Zeyen, Siobhan A.Wilson Abstract Mineralogically complex feedstocks, including kimberlite, serpentinite, and wollastonite skarns, have vast capacities to sequester carbon dioxide (CO2) through enhanced rock weathering and CO2 mineralization. However, only a small reactive fraction of these feedstocks will be accessible for carbon dioxide removal at Earth’s surface conditions. We have developed a new method to evaluate the reactivity of mineral feedstocks that consists of a batch leach test using CO2 coupled with total inorganic carbon (TIC) analysis to quantify easily extractable Mg ...

Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada

Ian M.Power, Gregory M.Dipple, Peter M.D.Bradshaw, Anna L.Harrison Abstract The Baptiste deposit is located within the Decar nickel district in British Columbia, Canada and is a promising candidate for a CO2 sequestration demonstration project. The deposit contains awaruite (nickel-iron alloy) hosted in an ultramafic complex, which is dominated by serpentine [Mg3Si2O5(OH)4; ∼80 wt.%] and contains reactive brucite [Mg(OH)2; 0.6–12.6 wt.%]. Experiments were conducted using metallurgical test samples and pulps from cores with the aim of determining the potential for this deposit to sequester CO2 via direct air capture of atmospheric CO2 and ...

Direct measurement of CO2 drawdown in mine wastes and rock powders: Implications for enhanced rock weathering

Amanda R.Stubbs, Carlos Paulo, Ian M.Power, Baolin Wang, Nina Zeyen, Siobhan A.Wilson Abstract Enhanced rock weathering (ERW) sequesters CO2 via solubility and mineral trapping and can be implemented by the mining industry to reduce their net greenhouse gas emissions. Kimberlite residues from Venetia Diamond Mine in South Africa, as well as powdered forsterite, serpentinite, wollastonite skarn, and 10 wt.% brucite mixed with quartz sand, were tested as potential feedstocks for ERW. A CO2 flux system directly measured CO2 removal rates and sensors tracked laboratory conditions and pore water saturation during a series of 2-week experiments. With ...