111 results for group: climate-change


Review of greenhouse gas emissions from crop production systems and fertilizer management effects Author

C.S.Snyder, T.W.Bruulsema, T.L.Jensen, P.E.Fixen Abstract Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management ...

The potential of enhanced weathering in the UK Author

P.Renforth Abstract Enhanced weathering is the process by which carbon dioxide is sequestered from the atmosphere through the dissolution of silicate minerals on the land surface. The carbon capture potential of enhanced weathering is large, yet there are few data on the effectiveness or engineering feasibility of such a scheme. Here, an energy/carbon balance is presented together with the associated operational costs for the United Kingdom as a case study. The silicate resources are large and could theoretically capture 430 billion tonnes (Gt) of CO2. The majority of this resource is contained in basic rocks (with a carbon capture potential of ...

Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology

Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll Abstract Limiting global mean temperature changes to well below 2 ∘C likely requires a rapid and large-scale deployment of negative emission technologies (NETs). Assessments so far have shown a high potential of biomass-based terrestrial NETs, but only a few assessments have included effects of the commonly found nutrient-deficient soils on biomass production. Here, we investigate the deployment of enhanced weathering (EW) to supply nutrients to areas of afforestation–reforestation and naturally growing ...

Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil

Mike E. Kelland, Peter W. Wade, Amy L. Lewis, Lyla L. Taylor, Binoy Sarkar, M. Grace Andrews, Mark R. Lomas, T. E. Anne Cotton, Simon J. Kemp, Rachael H. James, Christopher R. Pearce, Sue E. Hartley, Mark E. Hodson, Jonathan R. Leake, Steven A. Banwart, David J. Beerling Abstract Land-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits ...

Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering

Ilsa B. Kantola, Michael D. Masters, David J. Beerling, Stephen P. Long and Evan H. DeLucia Abstract Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils—applying crushed silicate rock as a soil amendment—is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and ...

Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment

Fengshan Guo,, Zhaoliang Song, Leigh Sullivan, Hailong Wang, Xueyan Liu, Xudong Wang, Zimin Li, Yuying Zhaoa Abstract Global warming as a result of rapid increase in atmospheric CO2 emission is significantly influencing world’s economy and human activities. Carbon sequestration in phytoliths is regarded as a highly stable carbon sink mechanism in terrestrial ecosystems to mitigate climate change. However, the response of plant phytolith-occluded carbon (PhytOC) to external silicon amendments remains unclear. In this study, we investigated the effects of basalt powder (BP) amendment on phytolith carbon sequestration in rice (Oryza sativa), a ...

Amazonia as a carbon source linked to deforestation and climate change

Luciana V. Gatti, Luana S. Basso, John B. Miller, Manuel Gloor, Lucas Gatti Domingues, Henrique L. G. Cassol, Graciela Tejada, Luiz E. O. C. Aragão, Carlos Nobre, Wouter Peters, Luciano Marani, Egidio Arai, Alber H. Sanches, Sergio M. Corrêa, Liana Anderson, Celso Von Randow, Caio S. C. Correia, Stephane P. Crispim & Raiane A. L. Neves Abstract Amazonia hosts the Earth’s largest tropical forests and has been shown to be an important carbon sink over recent decades1,2,3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1,2,3. Here we investigate Amazonia’s carbon budget and ...

The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System

P. FALKOWSKI, R. J. SCHOLES, E. BOYLE, J. CANADELL, D. CANFIELD, J. ELSER, N. GRUBER, K. HIBBARD, P. HÖGBERG, S. LINDER, F. T. MACKENZIE, B. MOORE III, T. PEDERSEN, Y. ROSENTHAL, S. SEITZINGER, V. SMETACEK, W. STEFFEN Abstract Motivated by the rapid increase in atmospheric CO2due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the global carbon cycle. Our knowledge of the carbon cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that although natural ...

Ocean acidification effects on in situ coral reef metabolism

Steve S. Doo, Peter J. Edmunds & Robert C. Carpenter Abstract The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2, causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosyst...

Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: An incubation experiment

Christiana Dietzen, Robert Harrison, Stephani Michelsen-Correa Abstract Applying finely ground silicate minerals to soils could mitigate CO2 emissions by enhancing the rate of carbon sequestration via silicate weathering. Using these minerals instead of agricultural lime to increase soil pH would also eliminate the dissolution of lime as a major source of agricultural CO2 emissions. However, dissolution rates of silicate minerals in the soil environment are uncertain and impacts of their application on the decomposition of soil organic matter have yet to be determined. A 3-month soil incubation was performed to investigate the effects ...