169 results for group: agriculture-1
Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2
Emily Pas, Mathilde Hagens, Rob Comans
Abstract
Enhanced weathering is a negative emission technology that involves the spread of crushed silicate minerals and rocks on land and water. When applied to agricultural soils, the resulting increase in soil pH and release of nutrients may co-benefit plant productivity. Silicate minerals and rocks differ in their enhanced weathering potential, i.e., their potential for both carbon dioxide (CO2) sequestration and soil quality improvements. However, studies comparing silicate minerals and rocks for this dual potential are lacking. Therefore, we compared the enhanced weathering potential of olivine ...
Impacts of dissolved phosphorus and soil-mineral-fluid interactions on CO2 removal through enhanced weathering of wollastonite in soils
Cameron Wood, Anna L.Harrison, Ian M.Power
The weathering of silicate minerals removes carbon dioxide (CO2) from the atmosphere over geologic timescales and is also investigated as an engineered strategy to mitigate climate change on decadal timescales. “Enhanced rock weathering” (ERW) is a carbon dioxide removal strategy that involves spreading of pulverized, highly reactive silicate rock at the Earth's surface such as within agricultural and natural soils. The rate and efficacy of ERW in agricultural soils to remove CO2 is difficult to quantify owing to the complex geochemical environment including biological-mineral-fluid-atmosphere intera...
Remineralizing soils? The agricultural usage of silicate rock powders: A review
Philipp Swoboda, Thomas F. Döring, Martin Hamer
Abstract
Soil nutrient depletion threatens global food security and has been seriously underestimated for potassium(K) and several micronutrients. This is particularly the case for highly weathered soils in tropical countries, where classical soluble fertilizers are often not affordable or not accessible. One way to replenish macro- and micronutrients are ground silicate rock powders (SRPs). Rock forming silicate minerals contain most nutrients essential for higher plants, yet slow and inconsistent weathering rates have restricted their use in the past. Recent findings, however, challenge past ...
Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions
Markus Anda J. Shamshuddin C.I. Fauziah
Abstract
Technology intervention is a key success to restore properties and productivities of a highly weathered soil (Oxisols). The main challenge is to find materials with the ability to generate soil negative charge, release various nutrients and suppress toxic elements. The objective of this study was to increase negative charge and nutrient content, and suppress Al and Mn toxicities of an Oxisol using finely ground basalt and rice husk compost (RHC) to promote cocoa growth under field conditions. Factorial field experiment of 4 × 4 used finely ground basalt and rice husk compost and arranged in a ...
Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: Insights from reactive transport models
Alida Perez-Fodich, Louis A. Derry
Abstract
We have investigated how biota contributes to rapid chemical weathering of Hawaiian basalts using a reactive transport model and chemical data from a soil chronosequence. These Hawaiian soils have developed under a tropical forest with rainfall >200 cm/yr and exhibit extensive weathering on timescales of 104 years. We developed a series of multicomponent reactive transport models to examine the role of soil respiration and low molecular weight organic acids in generating these intense weathering patterns. The base model starts with a 1-m basaltic porous media reacting with a fluid of rainwater ...
Temperature dependence of basalt weathering
Gaojun Li, Jens Hartmann, Louis A.Derry, A.Joshua West, Chen-Feng You, Xiaoyong Long, Tao Zhan, Laifeng Li, Gen Li, Wenhong Qiu, Tao Li, Lianwen Liu, Yang Chen, Junfeng Ji, Liang Zhao, Jun Chen
Abstract
The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been diffic...
Second crop of corn with micaxisto remineralizer in consortium with organic fertilizer
The objective of the present work was to use the mica shale remineralizer in consortium with organic fertilizer for corn culture implanted in the Brazilian Midwest region. The experiment was carried out in the second harvest of the 2020 agricultural year, at Fazenda Panamá, Municipality of Itumbiara, state of Goiás, in the no-tillage system on soybean ridge, implemented by the Center for Study and Research in Plant Science.
The location presents as coordinates geographical areas, 17 ° 58 'S latitude and 45 ° 22' W longitude and 554 m altitude. The agronomic characteristics "plant biometrics" evaluated were, the population of plants, performed ...
Physiological changes in soybean cultivated with soil remineralizer in the Cerrado under variable water regimes
Lucas Felisberto Pereira, Walter Quadros Ribeiro Junior, Maria Lucrécia Gerosa Ramos, Nicolas Zendonadi dos Santos, Guilherme Filgueiras Soares, Raphael Augusto das Chagas Noqueli Casari, Onno Muller, Cássio Jardim Tavares, Éder de Souza Martins, Uwe Rascher, Cristiane Andréa de Lima Guimarães, André Ferreira Pereira, Liliane Márcia Mertz-Henning, Carlos Antonio Ferreira de Sousa
Abstract
The objective of this work was to evaluate the influence of the soil remineralizer fine-graded mica schist (FMS) on soybean (Glycine max) physiology, yield, and grain quality under different water regimes (WRs) in the Brazilian Cerrado. The experiment ...
Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil
R. Suriyaprabha, G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajendran & N. Kannan
Abstract
The present study aims to explore the effect of high surface area (360.85 m2 g−1) silica nanoparticles (SNPs) (20–40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5–20 kg ha−1) in comparison with bulk silica (15–20 kg ha−1). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography–mass spectroscopy), and ...
Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview
A.D. Harley & R.J. Gilkes
Abstract
Rock-forming minerals of igneous and metamorphic rocks contain most of the nutrients required by higher plants for growth and development. Ground rock fertilisers may provide a source of nutrients to depleted topsoils where bulk soil solutions are not in equilibrium with fresh primary minerals. Slow dissolution rates of silicate minerals may inhibit the use of rock powders in agriculture unless suitable soils are identified and optimum rock powder properties developed. This review identifies previous research where the agronomic effectiveness of ground rock fertilisers has been evaluated. There are many ...