210 results for group: journal-article
Effect of rock dust-amended compost on the soil properties, soil microbial activity, and fruit production in an apple orchard from the Jiangsu province of China
Jiangang Li, Dmitri V. Mavrodi and Yuanhua Dong
Abstract
This study examined the effect of compost fortified with rock dust on the soil properties, soil microbial activity, and yield and fruit quality in a mature apple orchard from the Jiangsu province of China. The incor-poration of rock dust significantly improved the microelement contents of Ca, Mg, Fe, Mn, Zn, B, and Al, but without increasing phytotoxicity of the compost. The fortified compost had higher metabolic activity and functional diversity of microorganisms as determined by the community-level physiological profiling with Biolog EcoPlates. The two-year incorporation of the ...
Historical and technical developments of potassium resources
Davide Ciceri, David A.C.Manning, Antoine Allanore
Abstract
The mining of soluble potassium salts (potash) is essential for manufacturing fertilizers required to ensure continuous production of crops and hence global food security. As of 2014, potash is mined predominantly in the northern hemisphere, where large deposits occur. Production tonnage and prices do not take into account the needs of the farmers of the poorest countries. Consequently, soils of some regions of the southern hemisphere are currently being depleted of potassium due to the expansion and intensification of agriculture coupled with the lack of affordable potash. Moving ...
Carbonate Precipitation in Artificial Soils Produced from Basaltic Quarry Fines and Composts: An Opportunity for Passive Carbon Sequestration
D.A.C. Manning, P. Renforth, E. Lopez-Capel, S. Robertson, N. Ghazireh
Abstract
The proportions of different carbon pools within artificial soils prepared by blending composts with dolerite and basalt quarry fines has changed over a period of 7 years, accumulating inorganic carbon as carbonate minerals newly formed within the soils. With no artificial energy inputs following construction, this is regarded as a passive mineral carbonation process. Carbon isotope data show that up to 40% of the carbon within the soil carbonate is derived from photosynthesis, mixed with carbon from geological sources (limestone present in the quarry fines). ...
Biological Enhancement of Soil Carbonate Precipitation: Passive Removal of Atmospheric CO2
D.A.C. Manning
Abstract
Soils are the dominant terrestrial sink for carbon, containing three times as much C as above-ground plant biomass, and acting as a host for both organic and inorganic C, as soil organic matter and pedogenic carbonates, respectively. This article reviews evidence for the generation within the soil solution of dissolved C derived from plants and recognition of its precipitation as carbonates. It then considers the potential value of this process for artificially-mediated CO2 sequestration within soils. The ability of crops such as wheat to produce organic acid anions as root exudates is substantial, generating 70 ...
Biogeochemical processes and geotechnical applications: progress, opportunities and challenges
J.T. DEJONG, K. SOGA, E. KAVAZANJIAN, S. BURNS, L.A. VAN
Abstract
Consideration of soil as a living ecosystem offers the potential for innovative and sustainable solutions to geotechnical problems. This is a new paradigm for many in geotechnical engineering. Realising the potential of this paradigm requires a multidisciplinary approach that embraces biology and geochem- istry to develop techniques for beneficial ground modification. This paper assesses the progress, opportunities, and challenges in this emerging field. Biomediated geochemical processes, which consist of a geochemical reaction regulated by subsurface microbiology, curren...
Farming with Crops and Rocks to Address Global Climate, Food and Soil Security
David J. Beerling, Jonathan R. Leake, Stephen P. Long, Julie D. Scholes, Jurriaan Ton, Paul N. Nelson, Michael Bird, Euripides Kantzas, Lyla L. Taylor, Binoy Sarkar, Mike Kelland, Evan DeLucia, Ilsa Kantola, Christoph Müller, Greg Rau & James Hansen
Abstract
The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to ...
Carbonate Precipitation in Artificial Soils as a Sink for Atmospheric Carbon Dioxide
P.Renforth, D.A.C.Manning, E.Lopez-Capel
Abstract
Turnover of C in soils is the dominant flux in the global C cycle and is responsible for transporting 20 times the quantity of anthropogenic emissions each year. This paper investigates the potential for soils to be modified with Ca-rich materials (e.g. demolition waste or basic slag) to capture some of the transferred C as geologically stable CaCO3. To test this principal, artificial soil known to contain Ca-rich minerals (Ca silicates and portlandite) was analysed from two sites across NE England, UK. The results demonstrate an average C content of 30±15.3 Kg C m^-2 stored as CaCO3, ...
Fuzzy optimization model for enhanced weathering networks using industrial waste
Kathleen B. Aviso, Jui-Yuan Lee, Aristotle T. Ubando & Raymond R. Tan
Abstract
Enhanced weathering is a negative emissions technology based on the accelerated weathering of alkaline minerals. Such materials can be reduced to a fine powder and applied to land sinks to maximize the area exposed for reaction with rainwater and dissolved CO2. The carbon is captured in the form of bicarbonate ions in the runoff, which ultimately carries it to the ocean for virtually permanent sequestration. Enhanced weathering has been demonstrated in proof-of-concept laboratory and field tests, but scale-up to a level that delivers significant CO2 removal is still ...
Farming with crops and rocks to address global climate, food and soil security
David J. Beerling, Jonathan R. Leake, Stephen P. Long, Julie D. Scholes, Jurriaan Ton, Paul N. Nelson, Michael Bird, Euripides Kantzas, Lyla L. Taylor, Binoy Sarkar, Mike Kelland, Evan DeLucia, Ilsa Kantola, Christoph Müller, Greg Rau & James Hansen
Abstract
The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to improve ...
Mineral Sources of Potassium for Plant Nutrition
D.A.C. Manning
Abstract
Recently published assessments of nutrient budgets on a national basis have shown that K deficits for developing countries are so substantial that a doubling of world production of potash fertilisers would be required to balance inputs and offtake, simply to meet demands in Africa alone. The price of potassium fertiliser raw materials has increased by a factor of 4 during 2007–2009, approaching $1000 per tonne in some markets. Thus an annual investment of the order of US$5600 million is required to replenish soil K stocks in Africa. In this context it is appropriate to review current knowledge of alternative sources of ...