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Key Points: 13 

• Cation storage in soils can temporarily undo the carbon dioxide removal that occurs 14 
during the enhanced weathering process. 15 

• Lags in carbon removal after carbonate or silicate weathering can vary from years to 16 
many decades. 17 

• Carbon removal lags should be quantified in enhanced weathering deployments through 18 
rigorous validation of models with real-world data. 19 

 20 
Abstract: Significant interest and capital are currently being channeled into techniques for durable 21 
carbon dioxide removal (CDR) from Earth’s atmosphere. A particular class of these approaches 22 
— referred to as enhanced weathering (EW) — seeks to modify the surface alkalinity budget to 23 
durably store CO2 as dissolved inorganic carbon species. Here, we use SCEPTER — a reaction-24 
transport code designed to simulate EW in managed lands — to evaluate the throughput and 25 
storage timescales of anthropogenic alkalinity in agricultural soils. Through a series of alkalinity 26 
flux simulations, we explore the main controls on cation storage and export from surface soils in 27 
key U.S. agricultural regions. We find that lag times between alkalinity modification and climate-28 
relevant CDR can span anywhere from years to many decades, with background soil cation 29 
exchange capacity, agronomic target pH, and fluid infiltration all impacting the timescales of CDR 30 
relative to the timing of alkalinity input. There may be scope for optimization of weathering-driven 31 
alkalinity transport through variation in land management practice. However, there are tradeoffs 32 
with total CDR, optimal nutrient use efficiencies, and soil nitrous oxide (N2O) fluxes that 33 
complicate attempts to perform robust time-resolved analysis of the net radiative impacts of CDR 34 
through EW in agricultural systems. Although CDR lag times will be more of an issue in some 35 
regions than others, these results have significant implications for the technoeconomics of EW and 36 
the integration of EW into voluntary carbon markets, as there may often be a large temporal 37 
disconnect between deployment of EW and climate-relevant CDR. 38 
 39 

 40 
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1. Introduction 41 

Efforts to achieve key milestones aimed at limiting the extent of anthropogenic climate disruption 42 
in the coming century will very likely require significant amounts of net carbon dioxide removal 43 
(CDR) from Earth’s atmosphere. Specifically, even optimistic scenarios for decarbonization of 44 
energy systems, transport, and industry in the coming decades still require roughly 1-10 gigatons 45 
of carbon dioxide (GtCO2, 109 tons of CO2) to be removed from the atmosphere each year by the 46 
end of the century to achieve net carbon neutrality [IPCC, 2018; Rogelj et al., 2018]. The current 47 
supply of durable CDR — defined as carbon removal that is durable on timescale similar to or 48 
greater than the residence time of CO2 in the atmosphere (~100 years) — is many orders of 49 
magnitude below this [Smith et al., 2023]. There is thus strong impetus for rapid scaling of 50 
promising durable CDR approaches, and significant amounts of private and public funding flowing 51 
into efforts to develop the basic science underlying durable CDR pathways and bring them to scale. 52 
 53 
Enhanced weathering (EW) is one particularly promising geochemical approach toward durable 54 
CDR. Enhanced weathering involves adding fine-grained cation-rich rock feedstocks (typically 55 
basalt, olivine, wollastonite, or steel slag) to soils, where they dissolve in the presence of elevated 56 
soil CO2 to yield bicarbonate (HCO3-). This bicarbonate can in principle be transported by 57 
river/stream systems to the oceans, where much of it will remain stored on timescales on the order 58 
of 104 years [Kanzaki et al., 2023b; Lord et al., 2015; Renforth and Henderson, 2017]. Carbonate 59 
(limestone) weathering – currently in widespread use as an agricultural practice for soil pH 60 
management – can also lead to alkalinity export and CDR, although the efficiency and dynamics 61 
of this process are dependent in part on the pH at which weathering occurs [Hamilton et al., 2007; 62 
Oh and Raymond, 2006]. Because it has the potential to leverage extensive existing agricultural 63 
infrastructure, requires relatively little energy beyond that required to transport feedstock, and may 64 
have a range of agronomic and socioeconomic co-benefits, EW has attracted considerable interest 65 
as a durable CDR pathway that has the potential to scale rapidly in a relatively cost-effective way 66 
[Baek et al., 2023; Beerling et al., 2020; Beerling et al., 2018; Calabrese et al., 2022]. 67 
 68 
However, there is a range of possible fates for cations released from EW feedstocks, including 69 
calcium carbonate or secondary clay mineral formation in terrestrial settings [Bluth and Kump, 70 
1994; Lal, 2007], re-equilibration of the carbonic acid system in rivers and streams [Harrington et 71 
al., 2023; Knapp and Tipper, 2022; Zhang et al., 2022], and storage of cations on exchange sites 72 
within soils and in the lower critical zone [Appelo, 1994; Bolt et al., 1976; Spencer, 1954]. In the 73 
case of (permanent) secondary mineral formation and carbonic acid system re-equilibration CO2 74 
is released back to the atmosphere, undoing the initial CDR. In the case of cation storage CDR is 75 
instead delayed for an exchange timescale, as cation storage in soils is ultimately reversible and 76 
released cations will be charge balanced by HCO3- production upon release from the soil exchange 77 
complex (an exception to this may be EW using limestone as a feedstock, which could in some 78 
cases result in transient net CO2 release rather than delayed CO2 removal). 79 
 80 
Methods are currently being developed for tracking the initial release of cations from EW 81 
feedstocks [e.g., Reershemius et al., 2023]. These approaches can provide an estimate of the “CDR 82 
potential” that will eventually emerge assuming no downstream cation removal or CO2 degassing. 83 
However, the timescales over which this CDR potential will be realized are poorly known. This is 84 
critical for the technoeconomics of EW, because a ton of carbon removed immediately has more 85 
value than a ton of carbon removed in the future [e.g., Fearnside et al., 2000; Groom and Venmas, 86 
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2023; Richards, 1997; van Kooten et al., 2021]. As a result, offset purchase contracts using EW as 87 
a pathway must either accurately discount lagged carbon removal ex-ante or have ex-post 88 
guardrails for empirically verifying cation fluxes through the system over time. In either case, 89 
timescales of cation lag that are sufficiently long could potentially render EW projects unworkable 90 
for some voluntary carbon markets as currently structured. 91 
 92 
Here, we use a reaction-transport code [Kanzaki et al., 2023a; Kanzaki et al., 2022] designed to 93 
simulate enhanced weathering (EW) in managed lands to evaluate the throughput and storage 94 
timescales of anthropogenic alkalinity in agricultural soils. Through a series of idealized alkalinity 95 
flux simulations, we explore the main controls on cation storage and export from surface soils in 96 
key U.S. agricultural regions. We find that carbon removal lags induced by transient cation storage 97 
in soils can range from years to many decades — varying significantly across key agricultural 98 
regions of the U.S. – and suggest that carbon removal lags due to cation storage need to be 99 
considered in future EW research and deployment efforts. Lastly, we discuss the implications of 100 
these results for deployment of EW on carbon markets and suggest potential strategies through 101 
which background soil characteristics and deployment practice can both be leveraged to shorten 102 
carbon removal lags. 103 
 104 

2. Materials and Methods 105 

2.1 A gridded dataset for simulated alkalinity modification in U.S. agricultural regions 106 

We focus here on key agricultural regions of the coterminous United States, basing our analysis 107 
on areas with a cropland fraction greater than 10% and gridded at a resolution of 1ºx1º. As 108 
boundary conditions for the initialization and spin-up of our reaction-transport code we use a series 109 
of gridded data products for runoff, mean annual air temperature (MAT), soil moisture, 110 
aboveground net primary productivity (NPP), soil organic matter (SOM), fertilization rate, topsoil 111 
pH, soil cation exchange capacity (CEC), and soil base saturation (Fig. 1). Observational data are 112 
derived from the sources shown in Table 1. Soil pCO2 was calculated as a function of net primary 113 
production (NPP) and temperature according to the method of [Gwiazda and Broecker, 1994] 114 
adapted and modified by [Goddéris et al., 2010], [Gaillardet et al., 2019], and [Zeng et al., 2022]. 115 
 116 
The reaction-transport model used here is designed to track feedstock-specific alkalinity release 117 
and cation/carbon biogeochemistry in managed soils [Kanzaki et al., 2023a; Kanzaki et al., 2022]. 118 
We adopt a model configuration that is essentially the same as that described in [Kanzaki et al., 119 
2023a], which consists of two solid species (bulk soil phase plus soil organic matter), one gaseous 120 
species (CO2), and an inclusive range of aqueous species for evaluating charge balance and soil 121 
acid-base balance [Kanzaki et al., 2022]. We use four tuning parameters to initialize the soil 122 
column in each grid cell: (1) an aggregate cation exchange parameter (KH/Na); (2) a dissolved Ca2+ 123 
concentration at the upper boundary of the soil column, which is a convenient way of representing 124 
historical agricultural liming; (3) an input flux of organic carbon (OC) to the soil; and (4) a time 125 
constant for organic carbon turnover (Fig. 2). These parameters are tuned to match the observed 126 
values for soil pH, base saturation, soil organic matter content, and soil pCO2 (Fig. 1), with the 127 
soil column in each grid cell being spun up for 105 years to achieve steady state prior to alkalinity 128 
modification.  129 
 130 
 131 
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Following spinup and initialization, we conduct alkalinity modification experiments in which CaO 132 
is added as a source of alkalinity to the system. CaO is chosen as a feedstock because the 133 
dissolution and alkalinity release are extremely rapid – the approach is designed to remove the 134 
time-dependent uncertainty in dissolution rates associated with dissolution of less labile (but more 135 
readily deployed) feedstocks such as basalt or olivine, and to isolate the effects of cation exchange 136 
on the timescales of CDR. In the simulations shown here, feedstock is added continuously and 137 
mixed homogeneously down to a depth of 25cm. Feedstock addition rate is iteratively tuned to 138 
reach a specified agronomic target pH (pHt = 7.0) after one year of application. In-silico agronomic 139 
soil pH is calculated by the method described in [Kanzaki et al., 2023a] as the bulk phase pH value 140 
of simulated soil in 1 mM CaCl2 solution, equilibrated at a 1:2.5 (g/cm3) soil/solution ratio. The 141 
model domain for all simulations is 50 cm, which for our purposes is expected to yield a 142 
conservative (i.e., lower-bound) estimate of cation travel times through the soil column. 143 
 144 

2.2 CDR calculation methods  145 

We evaluate CDR over time in the simulated soil column using three metrics, each of which is 146 
designed to correspond to a distinct set of techniques for measurement, reporting, and verification 147 
(MRV) of CDR in enhanced weathering deployments. The first is scaled to the fraction of 148 
feedstock that dissolves in the soil (CDRdiss): 149 
 150 

 

,                                                                    (1) 

 151 
where γθ is the molar ratio of potential CO2 capture per unit dissolution of feedstock θ (e.g., γCaO = 152 
2), Jqfeed and Jqdiss are deployment (spreading) and dissolution fluxes of feedstock θ (mol m−2 y−1), 153 
respectively, and Δ denotes the flux difference between scenarios with and without feedstock 154 
deployment. Mechanistically, this metric corresponds to time-integrated solid-phase approaches 155 
for tracking on-field rates of CDR [Beerling et al., 2024; Kantola et al., 2023; Reershemius et al., 156 
2023; Reershemius and Suhrhoff, 2023]. In short, these techniques rely on measuring mobile 157 
cations and immobile elements in soil before and after feedstock application and using these 158 
measurements to estimate loss of base cations from applied feedstock. It is important to emphasize 159 
that these techniques do not track CDR directly, and instead provide an estimate of “potential” 160 
CDR that will emerge over time once the base cations have been charge balanced by alkalinity 161 
production [Reershemius et al., 2023].  162 
 163 
The second CDR metric employed here is scaled to the reduction of gaseous CO2 exchange 164 
between the soil column and the atmosphere (CDRdiff):  165 
 166 

 
,                                                                    (2) 

 167 
where γθ, Jqfeed, and Δ are defined as above and JCO2 and JSOC are the soil-atmosphere flux of CO2 168 
(mol m−2 y−1) and the decomposition flux (mol m−2 y−1) of soil organic carbon (SOC), respectively. 169 
Mechanistically, this metric reflects a decrease in the flux of CO2 from the soil column to the 170 
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atmosphere due to HCO3- production in the soil, and could in principle be measured through CO2 171 
gas fluxes from treated and control soils via eddy flux towers [Baldocchi, 2003], flux 172 
chambers[Pumpanen et al., 2004], or gas-phase CO2 sensors[Yasuda et al., 2007]. In contrast to 173 
the solid-phase metric shown by Eq. (1), this metric tracks CDR directly and reflects additional 174 
HCO3- production (and a corresponding reduction of the soil-atmosphere CO2 flux) due to soil 175 
management. 176 
 177 
Lastly, we can scale CDR efficiency to the increase in advective fluxes of aqueous dissolved 178 
inorganic carbon species through the soil column (CDRadv): 179 
 180 

 
,                                                                    (3) 

 181 
Where γθ, Jqfeed, JSIC, and Δ are defined as above and JDIC represents the flux (mol m−2 y−1) of total 182 
dissolved inorganic carbon (i.e., aqueous CO2, HCO3-, and CO32-) advected out of soil column. 183 
Mechanistically, this metric reflects additional HCO3- production and advection out of the system 184 
due to feedstock application and could in principle be measured by lysimeter techniques at the 185 
field scale [Weihermüller et al., 2007], point-collected dissolved solute measurements at the 186 
catchment scale [Larkin et al., 2022] , or possibly at larger scales through measurements of solute 187 
composition in stream/river systems. Similar to Eq. (2), this metric directly tracks net CDR in the 188 
soil column rather than gross alkalinity release.  189 
 190 
Note that all of these metrics for CDR efficiency are referenced to the maximum potential CDR, 191 
which assumes that all base cations released from feedstock θ are instantly and completed leached 192 
upon deployment and charge-balanced only by production of bicarbonate ions. At steady state, the 193 
reduction in soil-atmosphere CO2 flux should be equivalent to the increase in bicarbonate 194 
advection (CDRdiff ~ CDRadv). In the case of negligible cation sinks (e.g., secondary carbonate or 195 
silicate mineral phases) and on arbitrarily long timescales, CDRdiss ~ CDRdiff ~ CDRadv. However, 196 
transient cation storage could result in lag periods for which CDRdiff (or CDRadv) < CDRdiss. This 197 
allows us to isolate and quantify cation storage lags through time-dependent offsets between 198 
CDRdiss and CDRdiff/CDRadv. 199 
 200 
3. Results 201 

We first examine timescales of alkalinity release, cation exchange, and carbon removal in four 202 
representative sites across major agricultural regions in the U.S.: (1) Site 128, located in the 203 
Northern Plains region; (2) Site 311, located in the Corn Belt; (3) Site 161, located in the Southern 204 
Plains region; and (4) Site 411, located in the Southeast (Fig. 1, 2). As expected, alkalinity release 205 
into the system is effectively instantaneous across all sites (Fig. 3), with dissolution-based CDR 206 
(CDRdiss) matching effective CDR potential (CDReff) on a timescale of days to weeks. Again, this 207 
is by design, as our intent is to isolate exchange and transport lags from feedstock dissolution lags. 208 
However, most of the alkalinity released from feedstock is initially stored as exchangeable calcium 209 
(Caexch) and is only gradually released back into the system as an advective cation flux (Caadv) over 210 
timescales ranging from years to decades (Fig. 3). This causes a significant lag in carbon removal 211 
relative to alkalinity input because it is only when the exchangeable calcium is released into the 212 
advective flux and charge balanced by HCO3- production that CDR can occur.  213 

<latexit sha1_base64="quhMuMdtS7KWYre3D9unp5WGrhA="></latexit>

CDRadv =
�JDIC ��JSICX

✓

�✓�Jfeed
✓



Main Text | Kanzaki et al. | Manuscript submitted to Earth’s Future | 2024.02.20 

 6 

 214 
Although there is often a slight offset between carbon removal based on soil-atmosphere CO2 215 
exchange (CDRdiff) and advection of new DIC (CDRadv) in the first decade, they, as expected, track 216 
each other closely. These two metrics for carbon removal should be equivalent at steady state. The 217 
timescales of actual carbon removal (tracked by both CDRdiff and CDRadv) are significantly longer 218 
than those of alkalinity release (tracked by CDRdiss) across all sites (Fig. 3). For example, for our 219 
deployment in the Corn Belt CDRdiff and CDRadv reach only ~40% of the effective CDR potential 220 
after 10 years, with a timescale of ~50 years required to reach 80% of effective carbon removal 221 
(Fig. 3b). In contrast, realized CDR reaches ~80% of its potential within the first decade after 222 
deployment in the Southeast regional site (Fig. 3d). 223 
 224 
Because the timescale required to achieve a particular threshold of CDR potential varies by region, 225 
we geospatially analyze carbon removal lags across key agricultural regions in the U.S. (Fig. 4). 226 
There are relatively few sites that show any tangible carbon removal in the first year despite 227 
instantaneous cation and alkalinity input (Fig. 4a), and these are generally restricted to scattered 228 
locations in the southeastern U.S. (Alabama, Georgia, and Florida; Fig. 4e,i). Most of the regions 229 
examined here are below 50% of effective CDR potential after 5 years, and in some regions (the 230 
Corn Belt and Great Plains) it takes well over 10 years after instantaneous cation and alkalinity 231 
input for carbon removal to occur (Fig. 4h,l). Considering all regions together, it takes roughly 10 232 
years to surpass a median carbon removal efficiency of 50%, with a median CDR efficiency of 233 
75% surpassed in ~20 years (Fig. 5d,g). However, median lag times vary significantly by region 234 
— for instance, in the Corn Belt median CDR lag is ~50 years to achieve 75% of CDR potential, 235 
while the same carbon removal potential is achieved in the Southeast nearly an order of magnitude 236 
more rapidly (Fig. 5h,i). 237 
 238 
The magnitude of cation lag at any site clearly varies as a function of background soil 239 
characteristics. This is evident, for example, in the Southeast sites which generally show 240 
significantly shorter lag times overall as a result of very low cation exchange capacities with high 241 
water fluxes (Fig. 1h,  4f,j, 5f,i). At the same time, soil management strategy can also significantly 242 
impact cation lag times. For example, increasing agronomic target pH (pHt) can result in 243 
significantly higher CDR efficiency for a given time horizon (Fig. 6) because of gradual cation 244 
loading on the soil exchange complex, which is more rapid at the higher alkalinity fluxes associated 245 
with higher pHt. The impact of this can be significant – in the case of Site 411, a value of pHt = 246 
5.5 results in an advective CDR efficiency of ~30% after ten years, while the same CDR efficiency 247 
can be achieved in only ~2 years at pHt = 7.0.  248 
 249 
4. Discussion  250 

Our results suggest that carbon dioxide removal lags induced by cation exchange in agricultural 251 
soils can be significant, and in some cases can last multiple decades, adding to a robust evidence 252 
base for the following key conclusions: (1) cation sorption in soils with low base saturation (the 253 
ratio of cations to protons in soil sorption sites) will delay climate-relevant CO2 removal in EW 254 
deployments; (2) this lag time can be multiple years or even several decades; and (3) these lag 255 
times will vary geographically and with management practice. However, it is important to stress 256 
that although these basic conclusions are very likely robust, we do not currently have firm 257 
constraints on the uncertainty in lag times for any individual region or deployment strategy, and 258 
there is a pressing need to validate model estimates of carbon removal lag against real-world 259 
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observations. As a result, we would strongly argue that given the current state of knowledge 260 
reaction-transport models are not equipped to provide robust estimates of CDR lag for ready 261 
inclusion in carbon accounting schemes [e.g., Balmford et al., 2023]. 262 
 263 
Our time lag estimates may be conservative, given that our lag estimates are based on simulations 264 
with a 50 cm vertical domain and soil thickness throughout agricultural regions of the U.S. is 265 
significantly greater than this [e.g., Pelletier et al., 2016], such that the overall alkalinity input 266 
required to saturate the soil exchange complex would be larger. On the other hand, it is expected 267 
that there will be a certain length scale at which soils will become diffusionally isolated from the 268 
atmosphere. This isolation length scale will very likely vary with soil type and seasonally, which 269 
combine to drive time-dependent changes to soil moisture and fluid saturation. In addition, the 270 
apparent role of target pH in enhancing or inhibiting cation and alkalinity throughput (Fig. 6) could 271 
be complicated by implementation of more realistic feedstock dissolution kinetics. There is a well-272 
known scaling between ambient soil pH and rates of feedstock dissolution [e.g., Kump et al., 2000; 273 
Snaebjörnsdóttir et al., 2020], such that there should be a tradeoff between more effective cation 274 
throughput when target pH is continuously maintained at a high value and less effective feedstock 275 
dissolution. This dynamic represents an important topic for future research.  276 
 277 
An extended carbon removal lag after weathering induced by soil cation exchange has several 278 
significant implications for deployment of EW in a market framework. Most importantly, the 279 
economic value of carbon removal is time-varying, which means that EW deployments that aim 280 
to sell carbon offsets on a voluntary market should be able to accurately quantify the timing of 281 
climate-relevant CDR across timescales. One reasonable conclusion would be that suppliers of 282 
EW-based offsets on a voluntary market should be expected to either confront the technical 283 
challenge of quantifying carbon removal lags prior to deployment or the challenges to project 284 
finance associated with empirically verifying carbon removal over extended timescales prior to 285 
receiving revenue for offset production. The structure of carbon marketplaces could also be 286 
modified to account for this feature of the EW pathway.  In any case, our results suggest that cation 287 
storage is ubiquitous and needs to be considered in any EW deployment. 288 
 289 
There is significant potential scope for optimizing the efficiency of alkalinity transport through 290 
soils via both deployment siting and land management practice. For instance, our idealized 291 
deployment scheme – in particular, continuously managing soil pH at a uniform optimal 292 
agronomic value – is not optimized for cation transit through the soil column and from a land 293 
management perspective is also unlikely to be pursued in practice. Pulsed alkalinity addition 294 
followed by cation flushing with strong acid from fertilizer application may increase the efficiency 295 
of alkalinity transport in managed soils. However, one would expect lower time-integrated CDR 296 
overall, along with higher time-integrated soil N2O fluxes [Blanc-Betes et al., 2020; Chiaravalloti 297 
et al., 2023; Kantola et al., 2023; Val Martin et al., 2023; Wang et al., 2021b], in scenarios in 298 
which pH is intentionally and repeatedly lowered to enhance cation flushing. Additionally, in 299 
large-scale interpolated soil databases there are some regions that show increased pH and base 300 
cation abundance in the exchange complex at depth [e.g., Poggio et al., 2021]. In some cases, these 301 
gradients may enhance local alkalinity export. In any case, there are currently large uncertainties 302 
in quantifying the tradeoffs and overall impacts of optimized alkalinity throughput on agricultural 303 
greenhouse gas budgets, and this represents a critical topic for future research. 304 
 305 
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Perhaps most importantly, our results highlight the need for more empirical constraints on cation 306 
and alkalinity throughput in managed lands. Accurate representation of the soil exchange complex 307 
in process-based models such as that explored here is challenging, and there is currently significant 308 
uncertainty in the dynamics of cation breakthrough in managed soils that are well out of steady 309 
state. Moving forward, the production of large datasets that can constrain cation fluxes and carbon 310 
removal lag times, some of which could be produced by private-sector suppliers of carbon removal 311 
through EW, would represent a major step forward in our ability to accurately quantify cation 312 
storage across a range of scenarios and deployment strategies. There is a pressing need for these 313 
data to be rigorously and transparently evaluated, and for the results to be leveraged in the 314 
development of process-based models of soil cation exchange and time-dependent charge balance 315 
dynamics. 316 
 317 
5. Conclusions 318 

Soil biogeochemical modeling suggests that cation exchange dynamics in agricultural soils can 319 
lead to significant lags between alkalinity input from EW feedstocks (weathering) and climate-320 
relevant carbon dioxide removal. Lag times can vary from less than a year to many decades and 321 
will be controlled by background soil characteristics and land management practice. In some cases, 322 
carbon removal lags can be reduced through thoughtful site selection and/or optimized soil pH 323 
management. However, carbon removal lags induced by soil cation storage should be ubiquitous 324 
in the field, and EW deployments that commodify carbon removal through charge balance must 325 
take storage-induced removal lags into account. In the near-term, this will require rigorous and 326 
transparent validation of reaction-transport models against real-world observations of alkalinity 327 
throughput in managed lands. 328 
 329 
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TABLES 513 
 514 
Table 1. Sources of observational data for model spin-up and tuning. 515 

Parameter Observational Dataset 
Temperature [Fick and Hijmans, 2017] 
Soil moisture [Wang et al., 2021a] 

Runoff/infiltration [Reitz et al., 2017] 
Soil pH [Poggio et al., 2021] 

Soil organic matter [Poggio et al., 2021] 
Cation exchange capacity [Walkinshaw et al., 2022] 

Nitrification rate [Pan et al., 2021] 
Base saturation [Poggio et al., 2021] 

Soil erosion [USDA, 2011] 
Soil porosity [Rodell et al., 2004] 

Cropland fraction [Tuanmu and Jetz, 2014] 
Net primary production (NPP) [Zhao et al., 2005] 
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FIGURES: 551 
 552 
 553 

 554 
Figure 1. Gridded input data and boundary conditions from the coterminous U.S. used in our reaction-555 
transport model. Key input parameters include runoff (a), mean annual air temperature (MAT; b), soil 556 
moisture (c), above ground net primary production (NPP; d), soil organic matter (SOM; e), fertilization rate 557 
(f), initial soil pH (g), soil cation exchange capacity (CEC; h), and soil base saturation (i). Also shown are 558 
the four site locations discussed in the text (open circles), labelled by site number. 559 
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 588 
 589 
Figure 2. Results for gridded tuned parameters obtained during model spinup. Shown are soil cation 590 
exchange cofficients (KH/Na; a), soil surface dissolved calcium concentrations ([Ca]; b), organic carbon 591 
fluxes to the soil surface (Jorg; c), and turnover times for soil organic carbon (t; d). Also shown are the four 592 
site locations discussed in the text (open circles), labelled by site number. 593 
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 624 
 625 
Figure 3. Time-dependent cation and CO2 removal dynamics for the four sites discussed in the text. The 626 
upper panel for each site shows the relative distribution of calcium (Ca), the primary cation tracer in our 627 
simulations, between dissolved porewater Ca (Capw), exchangeable Ca (Caexch), and Ca advecting through 628 
the soil column (Caadv). The lower panel for each site shows the carbon dioxide removal efficiency relative 629 
to perfect (stoichiometric) removal (CDReff) according to three CDR metrics — tracking dissolution of the 630 
solid phase (CDRdiss), tracking changes in soil CO2 diffusion (CDRdiff), and tracking advection of dissolved 631 
inorganic carbon (DIC) out of the model domain (CDRadv). 632 
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 647 
 648 
Figure 4. Regional variability in carbon dioxide removal efficiency relative to stoichiometric removal 649 
(CDReff) over time. Shown from left to right are cumulative CDReff values for time horizons of 1, 5, 10, and 650 
50 years from the start of feedstock application. (a-d) CDReff values relative to fractional feedstock 651 
dissolution (CDRdiss); (e-h) CDReff values relative to changes in soil CO2 diffusion (CDRdiff). (i-l) CDReff 652 
values relative to changes in the advection of dissolved inorganic carbon (DIC) out of the model domain 653 
(CDRadv). 654 
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 684 
 685 
Figure 5. Aggregated regional CDR efficiency (CDReff) over time. Median values (open circles) and 95% 686 
confidence intervals (shaded envelopes) are shown for all U.S. grid cells examined here (left), aggregated 687 
Corn Belt grid cells (middle), and aggregated grid cells from the Southeastern U.S. (right). Values are 688 
shown relative to solid feedstock dissolution (CDRdiss; a-c), changes in soil CO2 diffusion (CDRdiff; d-f), 689 
and changes in advection of dissolved inorganic carbon (DIC) out of the model domain (CDRadv; g-i). 690 
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 708 
 709 
Figure 6. Example simulations from Site 411 (Southeast region) showing the impact of agronomic target 710 
pH on the fraction of calcium in the exchangeable pool (fCa,exch) and advective CDR efficiency (CDRadv) 711 
over time. All results are shown for a time horizon of 10 years after initial alkalinity modification. 712 
Increasing agronomic target pH results in more rapid shift in base saturation of the soil exchange complex, 713 
reducing the timescale required to achieve a given CDR efficiency. 714 
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