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Enhanced weathering (EW) aims to amplify a natural sink for CO, by incor-
porating powdered silicate rock with high reactive surface area into
agricultural soils. The goal is to achieve rapid dissolution of minerals and
release of alkalinity with accompanying dissolution of CO; into soils and drai-
nage waters. EW could counteract phosphorus limitation and greenhouse gas
(GHG) emissions in tropical soils, and soil acidification, a common agricul-
tural problem studied with numerical process models over several decades.
Here, we review the processes leading to soil acidification in croplands and
how the soil weathering CO, sink is represented in models. Mathematical
models capturing the dominant processes and human interventions govern-
ing cropland soil chemistry and GHG emissions neglect weathering, while
most weathering models neglect agricultural processes. We discuss current
approaches to modelling EW and highlight several classes of model having
the potential to simulate EW in croplands. Finally, we argue for further inte-
gration of process knowledge in mathematical models to capture feedbacks
affecting both longer-term CO, consumption and crop growth and yields.

1. Introduction

Enhanced weathering (EW) is a ‘negative emissions technology’ receiving
increasing attention because the Intergovernmental Panel on Climate Change’s
recently adopted 2°C target may be difficult to attain by reducing fossil fuel
emissions alone [1]. Natural chemical weathering is a small sink for atmos-
pheric CO,, consuming only approximately 0.25PgC yrfl [2], with little
effect on climate within our lifetimes. This is partly because many soils in
warm, humid locations, where weathering should be favoured, are depleted
in primary minerals. EW strategies aim to increase CO, consumption by
adding silicate rock dust to soils in order to strengthen this sink for atmospheric
CO,, thus offsetting anthropogenic carbon emissions from fossil fuels.

Mass balance [3,4] and kinetics [5] calculations and a numerical modelling
study [6] all suggest that terrestrial EW strategies could contribute to climate
change mitigation by consuming significant atmospheric CO,. Agricultural
land, comprising 15 Tm? globally in 2000 [7], may be particularly suited for
EW due to its ease of access and a range of ancillary benefits [8]. Indeed,
basalt dust is increasingly suggested as an agricultural amendment on highly
weathered nutrient-poor acidic soils in Brazil [9], where the climate is ideal
for EW.
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The potential of EW to consume CO, or provide co-benefits
is difficult to quantify at a range of scales [10]. For example, the
reliability of models for long-term forestry planning depends
on input weathering rates [11], but weathering rate estimates
vary greatly depending on how they are quantified. Several
independent weathering rate estimates are therefore rec-
ommended when predicting the outcome of EW or assessing
its effects [12]. These include empirical estimates based on
different types of field data [12], upper CO, consumption
limits based on mass balance approaches including assess-
ments of downstream effects such as cation flux in surface
water drainage from catchments [3], and rates from process-
based numerical models (tables 1 and 2 [6, 13-21, 24]).

Currently, few models provide weathering estimates or
predict co-benefits for stakeholders considering deployment
of agricultural EW on any scale. However, different classes
of models have already been developed to understand
plant—soil-biogeochemical interactions, and they perform
at least a subset of the calculations needed for EW (tables 1
and 2). With further development, they could provide a
diverse set of tools for EW planning and assessment. This
is particularly desirable given the increasing focus on multi-
model ensembles for estimating uncertainties in model out-
puts, including water and carbon cycling [25,26] and crop
responses to climate change [27-29].

2. (alculating the weathering sink for
atmospheric (0,

When atmospheric CO, dissolves in water at pH values
above the acid endpoint for H,O-CO, proton balance, it
forms carbonic acid that dissociates and lowers the pH of
water, favouring mineral dissolution (weathering). As weath-
ering of oxide minerals such as cation-bearing silicates
progresses, the oxide ion acts as a strong base and consumes
protons. The reaction releases a molar charge equivalent of
base cations to solution and this increase in alkalinity raises
pH; more CO, dissolves (is consumed) due to the increased
solubility of inorganic carbon ions (HCO;, CO3 ") at elevated
pH in equilibrium with soil pCO, (gas).

Absolute weathering rates are calculated with mineral-
specific rate laws capturing their dependence on reactive
dissolved species such as H*, and may vary over several
orders of magnitude depending on mineralogy, temperature,
pH and solute concentrations. Both protons and hydroxide
ions are potent weathering agents, and rates are generally
lowest at circumneutral pH where both ions are at relatively
low molar activity. Rates increase at lower and higher pH as
H" or OH™ activity increases. Weathering mechanisms domi-
nating at near-basic and higher pH can be important in arid to
semi-arid climates, but have negligible effect in humid climates
where pH is normally much lower. Solute concentrations and
pH depend on hydrology and flushing rates along with weath-
ering rates and nutrient cation and anion cycling. Existing
numerical weathering models [6,15,20] calculate weathering
and flushing rates and soil water chemistry, but require hydrolo-
gical and soil texture parameters along with mineralogy and
temperature.

Acidity, alkalinity and pH are strongly influenced by base
cations and their removal rate by hydrological flushing. The
source strength for base cations (mol ha ' y ') arises by multi-
plying mineral-specific weathering rates (mol m > mineral s %)

Table 1. Overview of models discussed in the text. APSIM, agricultural production systems simulator; GHG, greenhouse gas; ICZ, integrated critical zone; MAGIC, model of acidification of groundwater in catchments; SAFE, soil acidification

in forest ecosystems; SOM, soil organic matter.
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by reactive mineral surface area (m? ha™ ! or m?® m ™2 soil). Reac-
tive surface area is, therefore, a critical parameter in determining
weathering rates and pH, usually estimated with empirical
functions based on soil texture and mineralogy [6,20]. EW
models must account for changing surface area as the applied
particles dissolve; one method is to assume these particles are
shrinking spheres [6,30].

Soil chemistry also depends on the in situ pCO, that sup-
presses pH and arises from microbial mineralisation of soil
organic matter (SOM). SOM, largely derived from decaying
vegetation [31], is a carbon and energy source supporting
communities of respiring organisms that also take up nutri-
ent ions. SOM and microbial activity also affect soil
structure and the related moisture retention and water
permeability. Because soil pore space architecture and water
retention slow upward diffusion of respired CO, in soils,
respiration causes order-of-magnitude increases in soil CO,
levels beyond those of the atmosphere. Although degassing
will occur when CO,-charged soil drainage water reaches
rivers, within the soil profile elevated CO, accelerates
weathering through increased H"-activity.

3. Agricultural soil chemistry depends on
nitrogen cycling

Agricultural practices have a profound impact on the water,
carbon and nitrogen [32] cycles, and by altering soil chem-
istry can create acidic, nutrient-depleted conditions affecting
weathering regimes and crop growth. Nutrients in harvested
plant material cannot enter SOM pools or be mineralised to
release alkalinity. Soil acidification leads to Al and Mn tox-
icity [33], limiting nutrient uptake, root growth and crop
yields, so alleviation of this global agricultural problem is,
therefore, a potential EW co-benefit.

Plants acidify soil by several mechanisms. For example,
roots exude low-molecular-weight organic acids providing
protons at soil pH values high enough for the acids to be dis-
sociated, and the anions (oxalate/citrate/malate) are
chelating ligands accelerating weathering [34]. However,
nutrient demand is the main source of acidification from
living plants, because protons are exchanged for nutrient
cations in the ‘rhizosphere’ soil pore waters surrounding
roots and mycorrhizal hyphae [35].

Rhizosphere acidification occurs due to cation uptake in
excess of anion uptake, which depends on availability of
nitrate (NO;) and ammonium (NHj). Decomposition of
organic N in SOM produces ammonium [35], which is
converted to nitrate at a rate depending on soil pH, tempera-
ture, moisture and the existing nitrate and ammonium
concentrations [36]. Oxidation of organic N to nitrate is
accompanied by proton release and acidification of soil.
Ammonium may be retained on cation exchange surfaces
and on cell walls in the apoplast [37], but nitrate is highly
mobile and prone to transport from the soil profile. Because
of these transformations, application of ammonium or
organic fertilizers also contributes to nitrification and
generation of protons remaining in the soil following nitrate
leaching [35]. These protons reduce the solubility of inorganic
carbon ions, leading to undersaturated pore waters with
respect to dolomite (CaMg(CO3);) and calcite (CaCOs).
Dissolution of these ‘liming’ minerals can then release CO,
to the atmosphere [38].

Legumes with symbiotic nitrogen-fixing bacteria in root [ 5 |

nodules are less likely to take up nitrate. They generate
protons and exchange these for base cations from the soil sol-
ution, but the extent of rhizosphere acidification depends in
part on the forms of the organic acids produced during
carbon assimilation and is therefore species-specific [35].

Because nutrient demand, fertiliser usage, root distri-
butions and rhizosphere processes are crop-specific, proper
representation of crop rotations will be critical for capturing
EW effects. Teixeira et al. [39] showed that modelled soil
nitrogen differed substantially between four simulation
methods for wheat, maize and kale rotations.

Models simulating soil chemistry and EW in croplands need
to capture the most important processes of the nitrogen cycle,
including mineralisation, nitrification and nutrient uptake by
plants and microbes. These comprise the four major nitrogen
transformations in agricultural ecosystems [32]. Key loss path-
ways are nitrate transport in drainage waters, harvests and
NH; volatilization, while denitrification, burning, erosion and
trace gas (N,O, NO,) fluxes are often smaller [32].

4. Adapting existing models to simulate
enhanced weathering in croplands

The need to assess potential management strategies for reme-
diating soil acidification has driven the development of
nutrient cycling modules within crop models. A well-
established example, APSIM [40], simulates soil pH based
on proton budgets, calculating ‘excess’ cation uptake along
with carbon and nitrogen cycle imbalances due to removal
of biomass, organic matter accumulation and leaching of
organic anions. APSIM also calculates crop growth and soil
water cycling. This model ignores both cation exchange and
weathering [41], but if these were incorporated it could
provide detailed predictions of CO, consumption during
crop growth because it considers changes in multiple plant
alkalinity pools with time. APSIM can simulate management
practices including crop rotations [39], most of the major
nitrogen-cycling processes [22] and greenhouse gases
(GHGs) including N,O [42]. Crop models such as APSIM
are, therefore, already well placed to inform emissions
policy [43].

Another example, DayCent [44], simulates a similar range
of processes [43] and has been combined with the aqueous
geochemistry model pH redox equilibrium C (PHREEQC)
[45] to simulate GHG fluxes and stream water chemistry in
forested and alpine catchments [46]. Although computation-
ally intensive [24], DayCent-Chem requires input
weathering fluxes and ignores base cation cycling, assuming
uptake is balanced by release from SOM. Nevertheless, with
further development this integrated model could be a power-
ful predictive tool for EW, even capturing the fate of heavy
metals that might be released from the applied dust [47].

Acid rain and resulting S and N deposition drove the
development of policy-relevant [48] models to estimate the
‘critical loads’ of acid that ecosystems can tolerate without
damage; linkages to plant or biodiversity models have
allowed calculation of soil chemistry thresholds for different
vegetation types [49]. These models typically include equili-
bria with solid phases, but often require initial weathering
rate and nutrient uptake data as inputs. A widely used
dynamic example is MAGIC [50], which calculates changes
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in soil chemistry with time at catchment scale. MAGIC
includes carbonate equilibria, carbon and nitrogen cycling,
and adjusts the input exchange capacities and weathering
rates to match observed calibration data.

PROFILE is a steady-state soil chemistry model [18,19]
with a long history of use in forestry and agriculture, and
its dynamic version, SAFE [20], calculates changes in acid—
base balance over time. These models have been employed
at field and catchment scale and could easily calculate CO,
consumption due to EW by incorporating appropriate rate
and surface area expressions for the applied minerals.

Several process-based weathering models calculate CO,
consumption and weathering at regional or global scale
given climate, soil water flow and respiration, lithology and
a suite of weathering rate laws. One such model, WITCH
[15], has been applied to large watersheds such as the Mack-
enzie River basin [16]. Another, the less computationally
complex Sheffield weathering model [6], has previously
been employed globally in a non-agricultural EW context.
These models rely on the output of dynamic global vegetation
models (DGVMs) simulating plant productivity, soil respir-
ation and hydrological flows and could be adapted to
assess EW in agricultural practices at farm scale.

A recently developed code to assess the interaction of soil
structure with vegetation and mineral weathering is the Inte-
grated Critical Zone (ICZ) model incorporated into the Soil
and Water Assessment Tool software package [51]. The ICZ
model simulates the plant—soil-water system with one-dimen-
sional water flow and reactive transport in the soil profile. It
incorporates a vegetation model, SOM dynamics, nutrient
transformations of N and P, mineral weathering kinetics
based on the SAFE code noted above, and geochemical specia-
tion equilibria between solutes, mineral and gas phases and
ion-exchange surfaces [13,14]. The ICZ includes a sub-model
for changes in soil structure with changing biological activity,
organic carbon inputs and mineralization, and the resulting
changes in bulk soil hydraulic and transport parameters feed-
back to the equations describing hydrological flow and
transport processes. Simulating EW with the code still requires
process descriptions accounting for changing reactive surface
area as rock powder dissolves; e.g. shrinking core equations.

5. Capturing dynamic plant—soil-enhanced

weathering interactions

Weathering depends on productivity, hydrology and nutrient
cycling, but EW-type treatments have been shown to affect
plant growth [52] and water cycling [53] over several years,
and phosphorus availability within several months [54].
These feedbacks indicate that EW should be coupled to mod-
ules calculating crop growth, nutrient cycling and soil
hydrology.

Models integrating EW with crop productivity and nutri-
ent limitation [55] are especially desirable. Although some
DGVMs have been adapted for food and biofuel crops [22],
they represent nutrient cycling to a varying degree [56], limit-
ing their ability to predict productivity under climate change
[55]. Likewise, crop models explicitly representing nitrogen
stress [57] suggest it will be significant for food crops as cli-
mate changes. Phosphorus limitation, a common problem
in highly weathered tropical soils, is difficult to quantify
but is being incorporated into DGVMs [58], albeit without

weathering kinetics. However, P is derived from weathering, n

and P cycling deserves priority because basalt soil amend-
ments increase available soil P with a likely feedback on
crop productivity [54].

Separate plant and SOM pools for each nutrient along
with root and nutrient uptake dynamics [59] would allow
calculation of changing chemistry as a crop matures. Non-
structural nutrients such as potassium may be released
from the fastest-decomposing litter pools, while nitrogen
may be retained in more recalcitrant SOM pools.

EW might also change the soil properties governing
hydrology within DGVMs. Overall mineral composition
and particle size distribution of the applied material change
with time because of the different weathering rates of the con-
stituent minerals. Soil porosity may change following
application if individual or aggregated [60] particles change
micropore characteristics; particles may be flushed to
deeper layers or lost in run-off when they become smaller
than micropores. Particle transport is, therefore, a priority
for development and inclusion in EW models with associated
hydrologic feedbacks on crop production.

6. Conclusion

EW models adopted for croplands need to capture the major
water, nutrient and GHG fluxes to realistically simulate CO,
capture by weathering. These fluxes do not occur in isolation;
they interact and lead to feedbacks across a range of time-
scales. Critically, water flow and the concentration of
weathering agents such as H" in the soil solution are strongly
controlled by crops. When combined with agricultural prac-
tices, these processes can lead to persistent soil acidity,
suggesting a co-benefit for farmers because the base cations
released by EW increase the alkalinity of the soil.

Existing crop models typically ignore weathering, but may
simulate nitrogen cycling, proton balance and GHGs. On the
other hand, weathering models driven by coupling with
DGVMs may not capture enough cropland processes. The ICZ
model couples a vegetation model with mineral solubility for car-
bonate phases and silicate mineral weathering kinetics.
Nevertheless, a diverse set of modelling tools of varying
complexity and taking a variety of approaches would likely be
more useful for assessing the uncertainties and relative
importance of EW parameters and processes than any one model.

One of the most important criteria for quantifying EW
dynamics that emerges from this review of modelling
approaches is representing the feedbacks between crop
growth and mineral weathering kinetics. Understanding the
mechanistic process linkages between EW and climate
mitigation requires coupled calculations, on intra-annual time
scales of relevance for agricultural practices and on inter-
annual time scales for climate change mitigation. A priority
for the development and assessment of EW across all scales
as a possible climate mitigation option is to develop this
coupled modelling capability and validate it with appropriate
field and laboratory experiments.
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