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Soils are the largest pool of organic carbon (C) on land, and they 
offer both an opportunity and a risk to climate-C feedbacks 
in the Earth system because of their role in the global C cycle 

as well as their vulnerability to disturbance1–3. Disturbance by fire 
is often considered to lead to C losses because fires combust plant 
biomass and organic soil layers and promote erosion and leaching, 
subsequently reducing inputs to and stimulating losses from soils 
that can persist for several years after the fire4–7. However, fires can 
cause several transformations within an ecosystem that can offset the 
immediate C losses and may ultimately stabilize the ecosystem C.

Fire-driven changes to the persistence of soil organic matter (SOM) 
are potentially important for offsetting combustion-based C losses 
by reducing decomposition8. Despite the extensive research into how 
fire alters the properties of SOM9–12, there has been only a limited 
connection between changes in the SOM properties and the response 
of soil C fluxes to long-term shifts in fire frequencies and intensities. 
Most studies that connect fire effects on soil C fluxes with changes 
in SOM properties focus on the formation of pyrogenic C8,13–16.  
However, pyrogenic C formation can be minimal in ecosystems with 
a low woody biomass and is just one of the many fire-driven changes 
relevant to SOM stability: burning can change the soil porosity, aggre-
gate formation, soil hydrophobicity, the potential sorption of organic 
matter to minerals, microbial biomass and composition, and the soil 
pH—all of which alter the decomposition of the SOM10–12. Here, we 
review the evidence for how fire affects the factors that determine 
the SOM stability, and not just the SOM content alone, to better 
understand how changes in decomposition dynamics influence the 
response of soil C storage to shifting fire regimes.

Global overlap of fire and soil carbon
The spatial extent of fire combined with the fact that it occurs 
in most ecosystems worldwide17–22 make it a relevant ecological  
process for C cycling at the global scale (Fig. 1a,b). To provide  

quantitative estimates of the potential impact of fire on SOM, we 
analysed global maps of ecosystem types, burned area and soil 
organic C (SOC) (Supplementary Information). By masking the soil 
C map with the global burned area map, we estimated the poten-
tial amount and distribution of soil C in fire-prone regions (Fig. 2a, 
Table 1 and datasets in the Supplementary Information).

Globally, the topsoils (<30 cm deep) in fire-prone regions store 
460.4 PgC, with 19.2 PgC in regions that burn annually. However, 
the distribution of topsoil C and fire across ecosystems is skewed 
(Table 1 and Fig. 2b,c). Ecosystems with frequent low-intensity fires, 
such as savannahs and grasslands, contain 28% of the total soil C but 
they amounted to 79% of the global burned area. Ecosystems with 
infrequent high-intensity fires, such as boreal forests, contain 21% 
of the total soil C but amount to only 1.5% of the global burned area. 
Tropical and subtropical forests, which generally experience intense 
deforestation fires, contain 25% of the total soil C and account for 
8.5% of the global burned area. Taken together, around 70% of the 
total global topsoil C (a global total of 653 PgC) is exposed to fire 
(for perspective, the total C in vegetation globally is estimated to be 
450–650 PgC (ref. 23)).

The latitudinal distribution of topsoil C is highest in the north-
ern regions, but when re-scaled to the burned area, soil C exposed 
to fire is less than the amount in subtropical regions (Fig. 2b,c). This 
is because the high frequency of fire in the sub-tropics (with fire 
return intervals of 6–45 years) and the total burned area (3.85 mil-
lion km2) compensates for the lower stocks of soil C. Thus, the 
potential exposure of total soil C pools to fire is skewed towards 
lower latitude systems.

To understand how these vulnerabilities play out in reality, 
researchers have drawn on the multitude of wildfires, prescribed 
fires and fire-manipulation experiments5,7,24. A meta-analysis 
has demonstrated that frequent burning resulted in lower soil C 
in savannah-grasslands and broadleaf forests, but higher soil C 
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in warm needleleaf forests relative to unburned plots using mea-
surements in the top 0–20 cm of mineral soils (Table 1)25–28. In 
cooler needleleaf forests, where the SOM is combusted from the 
thick organic horizon24,29, C losses from wildfires can be espe-
cially large. Although direct heating during fire can be relatively 
shallow (for example, 4–7 cm in prescribed burns in coniferous 
forests30), repeated burning can change the soil C stocks down to 
a depth of one metre in some cases31. Changes are more generally 
concentrated in the top 0–20 cm of soils25–28. Many studies seeking 
to explain how fire changes SOM storage have focused on differ-
ences in the combustion of biomass and SOM29,32–34 (that is, inputs 
into mineral soils); however, the numerous cases where inputs into 
soils cannot predict SOM storage highlight the limits of traditional 
input-focused theory and suggest that other factors, such as shifts in 
decomposition, also matter.

Inputs alone do not always explain soil carbon responses 
to fire
Despite the near ubiquity of fire changing the aboveground biomass 
inputs into soils and/or combustion of the organic horizon, the 
response of total SOM storage is highly variable5,12,24,35,36. Part of this 
variability can be linked to the degree of change in plant biomass 
inputs to soils, but this is insufficient to explain the cases where (1) 
biomass declines yet SOM changes very little37–40, (2) biomass does 
not change and SOM is lost41 or (3) SOM increases despite there 
being either no change or a loss of biomass25,42,43. Consequently, a 
perspective that looks beyond biomass inputs alone as a regulator of 
SOM may help to understand how fire shifts soil C storage in these 
different contexts.

There are clear effects of fire on the SOM turnover in ecosystems. 
For example, in boreal forests, residual SOM after a wildfire was 
older with longer turnover times based on 14C data (for example, 

two years after a wildfire, the SOM was over 100 years old, whereas 
150 years after a wildfire, the SOM was 60 years old)44, although 
these effects tend to decline with soil depth45. However, this is not 
always the case, with turnover not changing after fire in a temperate 
conifer forest46. Changes in the persistence of SOM may thus help to 
reconcile different fire effects on SOM storage.

As more frequent burning reduces biomass inputs to soils, contin-
ued processing of SOM by decomposers could deplete soil C (Fig. 3).  
If decomposition declines to the same extent as inputs decline, no 
net change will occur. If fire reduces decomposition more than fire 
reduces the biomass inputs, then C accumulation may occur (Fig. 3).  
Numerous examples exist in support of these different responses 
(presented in Fig. 3). Thus, the net effects of fire on SOM storage 
are a balance between the changes in decomposition and biomass 
inputs that manifest over multiple decades and fires.

Processes that contribute to soil organic matter 
persistence relevant to fire
Here, we focus on the stabilization of SOM, which is defined as a 
decrease in the long-term SOM loss to oxidation and microbial 
respiration as well as leaching and erosion47–50. Building on previ-
ous frameworks47,51, we evaluate the stability conditions using the 
following factors. Accessibility, which refers to the spatial location 
of organics that determine microbial and enzymatic access, such as 
aggregation. Interactions, which refers to the chemical and physi-
cal connections between multiple organics or mineral-organics that 
alter the degradation or synthesis of new organics. Recalcitrance, 
which refers to the molecular-level characteristics of the organics 
that influence microbial and enzymatic degradation. Recalcitrance, 
interactions and accessibility integrate into stability, which affects 
the equilibrium pool size in combination with ecosystem character-
istics that also impact decomposition.
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Fig. 1 | Distribution of topsoil organic C and fire frequency across the globe. a, Total SOC in the top 30 cm from ref. 103. b, Burned area (averaged over 
1998–2015, Global Fire Emissions Database 4s) expressed as the fraction of a gridcell that burns within a year at 0.25 × 0.25° resolution104.  
The distribution of fire is used to mask the distribution of soil C for all the analyses in the paper.
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Accessibility. Aggregation, as one of the main factors influencing 
accessibility relevant to fire, plays an important role in stabilizing 
SOM by decreasing microbial access to substrates, as well as by 
decreasing the rates of extracellular reactions through hindering the 
diffusion of reactants and products or by creating anoxic zones48,52. 
Aggregation is driven by a range of underlying physicochemical, 
microbial and plant processes53, many of which can be influenced 
by fire (Fig. 4).

Fire can directly affect aggregation by thermally transform-
ing SOM (Fig. 4)54. Physical stabilization can increase when heat-
ing promotes the formation of aggregates (for example, aggregate 
abundance increased from 58% to 84% in unburned versus burned 
forests55), which may stabilize residual SOM after fire. Alternatively, 
aggregates can be destroyed during a fire56; however, this can 
depend on soil moisture and heating, with faster heating in moister 
soils leading to greater aggregate disruption and C mineralization in 
temperate forest soils57. Direct heating effects are probably concen-
trated in the organic and upper mineral horizons58, with the heat-
ing depth depending on the fuel load and mineral content30. Thus, 
the degree and rate of heating are important for predicting how fire 
changes the aggregation and subsequent C turnover.

Fire can indirectly affect aggregation by modifying the 
plant-root physiology. In savannahs, fire tends to favour grasses 
that form symbioses with arbuscular mycorrhizal fungi (Fig. 4), 
which can increase the aggregate stability59,60. Yet multi-decadal 
fire-manipulation experiments in savannahs have demonstrated 
that fire can both decrease the colonization of mycorrhiza on grass 
roots by 50% (ref. 61) or leave it unchanged62. Furthermore, fire tends 
to select for fine-rooted species31, and fine roots increase soil bind-
ing and aggregate stability60. Consequently, fire-driven changes in 

plant composition may promote aggregation when it stimulates 
arbuscular mycorrhizal growth and fine-root production.

Fire also impacts accessibility of soil C to microbial decom-
position through post-fire erosion and deposition. Erosion and 
sedimentation rates can increase after wildfires63, causing a rear-
rangement of both unburned and burn products of SOM across the 
landscape. Eroded landscapes can expose deep SOM to microbial 
access while deposition buries and reduces decomposition64.

Interactions. Mineral interactions can hinder the ability of microbes 
to decompose SOM because minerals can adsorb or occlude SOM 
and immobilize exoenzymes that are responsible for depolymeriza-
tion reactions2,48,50,65–67. These organo–mineral interactions play an 
important role in SOM preservation, protecting even labile com-
pounds for decades to centuries50,67, as shown by mineral-associated 
organic complexes being much older than particulate organic 
compounds in the same soil65,66. The potential for organo–min-
eral interactions depends on edaphic characteristics, such as the 
types of clay minerals68. For example, soils with high-activity clays 
(for example, 2:1 phyllosilicates) tend to have higher amounts of 
mineral-associated organic matter2. Hence, fire-driven shifts in 
the balance of mineral-associated and particulate SOM may have 
important implications for SOM stability.

Fire can change the stability that arises from association with 
minerals by thermally modifying the minerals69 (Fig. 4). For 
example, intense fires can directly alter the soil texture and min-
eral composition, with slash-and-burn fires (temperatures > 600 °C) 
resulting in a coarser soil texture and a reduction in gibbsite and 
kaolinite concentrations70. Hot wildfires caused a collapse of 2:1 
phyllosilicates, reducing potential sorption, but the effect was 
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Fig. 2 | SOC stocks vulnerable to fire. a, Topsoil (<30 cm) organic C stocks in a gridcell weighted by the burned area in that cell. The geographic 
distribution is given in panel (a), which only includes gridcells with non-zero burned area (that is, fire-prone regions). The relatively short timescale of 
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patchy and was estimated to impact ~2% of the total wildfire area71. 
In other cases, wildfires increased the binding between iron and alu-
minium and organic matter by around twofold72, promoting SOM 
stability. Direct measurements of SOM age using 14C data revealed 
that residual SOM in burned plots had slower turnover times and 
was older in both free and mineral-associated SOM (rising from 85 
to 146 years and 137 to 192 years, respectively)73,74. Changes to SOM 
turnover time decline with depth74, suggesting the thermal transfor-
mation of SOM as the main driver of changes in mineral associa-
tion. Therefore, fire-driven changes in mineral associations may be 
important for how fire changes the soil C stability.

Recalcitrance. The chemical recalcitrance of SOM is important 
for determining the stability of particulate SOM and the poten-
tial stabilization via interactions with minerals47,75,76. Fire can have 
direct effects on recalcitrance via the thermally induced heating of 
organics as partial oxidation and condensation occurs8, which has 
been covered extensively in past reviews12,14,16,69 (Supplementary 
Information and Fig. 2), and aligns with our stability framework 
(Fig. 4). First, fire-driven changes in molecular properties include 
increases in the concentration of lignin and polyphenols in SOM by 
more than twofold in boreal forests77,78 and increases in pyrogenic 
C14,16,79–81, which tend to persist in the soil relative to other forms 
of SOM16,50,80, although the turnover times vary substantially82. 
Discussions of pyrogenic C are extensive14,16,79–81, so we do not focus 
on it here.

The temperature of the burn determines the molecular conden-
sation, with temperatures >300 °C resulting in a higher propor-
tion of aromatic structures83 (Fig. 4). Thermal alteration of organic 

matter is distinct from decomposition because it removes external 
oxygen groups rather than enriching carboxyl constituents, result-
ing in structures with lower potential biodegradation36. Depending 
on the potential physical transport of SOM after fire (erosion dis-
cussed in the ‘Accessibility’ section), the formation of recalcitrant, 
often hydrophobic, SOM and charcoal is hypothesized to lead to the 
accumulation of soil C35.

Decomposer community composition and activity. Fires can cause 
the direct mortality of bacteria and fungi, thereby reducing decom-
position (Fig. 4). A meta-analysis found that fire decreased fungal 
abundance by 47.6% and microbial abundance by 33.2%, and these 
effects were most pronounced in high-intensity wildfires. Recovery 
can take several years to decades. In a boreal forest, burned plots had 
around one-third of the microbial biomass compared with unburned 
plots five years after a wildfire84. Low-intensity fires can also impact 
potential decomposition. A survey of four fire-manipulation 
experiments illustrated that the activity of hydrolytic enzymes that 
decompose SOM was 187% higher in the unburned versus repeat-
edly burned plots85. Meta-analyses have found that losses of micro-
bial biomass correlate with decreases in decomposition activity86,87 
(Fig. 4). The lower summer albedo in burned areas, especially due 
to large severe wildfires, can lead to surface warming88, which could 
contribute to decomposition changes.

Changes in microbial community composition are important 
but tend to be context specific. Meta-analyses have shown that 
fungi tend to be more sensitive to fire, resulting in fire causing a 
relative reduction in fungi versus bacterial abundance89,90. Declines 
in decomposition after a fire have been attributed to a lower fungal 

Table 1 | Distribution of soil C stocks and burned area across the main ecoregions that experience burning

Ecoregion Area 
(million km2)

FRI 
(yr)

FRI 
s.d. 
(yr)

Total 
burned area 
(million km2)

Soil C in 
burned 
area (PgC)

Annual 
burn soil C 
(PgC)

Plot soil C 
(kg m−2)

Plot soil 
C s.d. 
(kg m−2)

Repeated fire effects 
on mineral soil C

Tropical and subtropical 
grasslands, savannahs 
and shrublands

18.4 6 5 3.366 67.7 12.53 3.62 6.33 −30% (−66/+96)

Tropical and subtropical 
moist broadleaf forests

17.2 45 19 0.375 101.1 1.98 5.82 4.11 −42% (−53/−7)

Deserts and xeric 
shrublands

11.2 37 21 0.295 34.2 0.83 3.07 2.28 n.d.

Flooded grasslands and 
savannahs

1.03 7 5 0.166 4.7 0.87 5.15 3.17 n.d.

Temperate grasslands, 
savannahs and 
shrublands

8.79 52 33 0.159 44.2 0.82 5.33 3.55 −18% (−42/−1)

Tropical and subtropical 
dry broadleaf forests

2.83 27 13 0.106 14.7 0.51 5.26 5.09 −29% (−61/+6)

Temperate broadleaf and 
mixed forestsa

10.6 121 66 0.088 57.6 0.50 5.56 6.20 −42% (−53/−7)

Boreal forests/taigaa 9.89 155 88 0.066 85.9 0.54 8.96 2.52 −39% (−52/−21)

Montane grasslands and 
shrublands

2.44 37 15 0.065 10.4 0.25 4.37 3.48 n.d.

Mediterranean forests, 
woodlands and scrub

2.42 107 55 0.024 9.4 0.09 3.70 5.28 −54%

Temperate conifer forestsa 3.34 187 88 0.018 19.6 0.12 5.81 5.24 −34% (−54/−22)

Tundra 1.43 212 106 0.007 10.9 0.05 8.12 4.88 n.d.

Sum across ecoregions 89.5 4.735 460.4 19.1
aEcoregions where the direct combustion of SOM is especially large. The methods are described in the Supplementary Information. FRI is the fire return interval, measured in years, within an ecoregion. The 
total burned area is the sum within an ecoregion. Soil C exposed to fire is the total C (in petagrams carbon (PgC), top 0–30 cm of soil) in gridcells with a non-zero burned area. Annual burn soil C is further 
weighted by the burned area in the gridcell. Plot soil C is the mean stock of soil C exposed to fire. Repeated fire effects show changes in the mineral soil C between frequently burned/unburned treatments 
calculated across sites in a meta-analysis (with the range in parentheses)5,85. s.d., standard deviation; n.d., not determined. Ecoregions are displayed in Extended Data Fig. 1.
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abundance based on declines in exoenzymes that are associated with 
fungi production, such as phenol oxidase84, as well as correlations 
between a lower fungal biomass and slower SOM turnover44, and 

lower rates of litter mass loss91. Changes to detritivore abundance 
and composition, such as arthropods, can be substantial and last for 
several years90,92 especially when the organic horizon is completely 
removed, potentially reducing decomposition and the transfer of lit-
ter into topsoils (Fig. 4).

Fire can also lead to an increase in microbial activity. The mobi-
lization of pyrogenic C and residual ash can prime decomposition93. 
Microbial taxa that are important for C and nutrient cycling can 
be ‘pyrophilic’ (for example, Arthrobacter), increasing in abundance 
following a burn94 (Fig. 4). Thus, changes in the environment, com-
position and population sizes can either accelerate or decelerate 
SOM losses, but the causes of directionality are unclear. A more 
mechanistic understanding of the factors determining how fire 
changes the composition and activity of decomposer species could 
be a useful way to improve our understanding of SOM persistence.

Environmental controls on fire-driven changes in 
decomposition
The potential effects of fire on SOM turnover differ across environ-
mental and ecological conditions. Gradients in the potential sorp-
tion of SOM to minerals arising from edaphic variability can shift 
the dominant forms of SOM from being in particulates to associ-
ated with minerals as soils change from having a low to a high sta-
bilization potential2,48,65. Changes in stabilization potential shift the 
potential forms of biomass that are important for soil C pools; when 
matrix stabilization is high, leaf litter contributes relatively less to 
soil C than root biomass inputs and exudates2. Because fire tends 
to impact aboveground biomass and organic horizon stocks much 
more than it does belowground biomass, and the heating depths in 
soils decline with a greater mineral content because minerals dis-
sipate heat30 (Fig. 4 and references therein), we expect fire effects on 
SOM turnover to be lower in soils with a high stabilization poten-
tial. In soils with a low stabilization potential, particulate SOM is 
the dominant form and tends to be derived from leaf litter and is 
more prone to decomposition. Given that fire readily combusts leaf 
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litter and kills detritivores that are responsible for litter decomposi-
tion (Figs. 3 and 4 and references therein), fire should have larger 
effects on the turnover of SOM in areas with a low matrix stabiliza-
tion potential.

Another important axis of variability is the relative storage of 
SOM in organic versus mineral horizons. In boreal forest soils with 
a prominent organic horizon, combustion of SOM by fire is a large 
loss pathway and takes decades to centuries to re-accumulate7,29,95. 
In severe forest wildfires, losses also arise because plant mortal-
ity and soil structure destruction enable erosion and leaching96. 
Generally, losses of physical integrity are greater in areas that have 
experienced higher severity fires and are on steep slopes or exposed 
to large precipitation events96. Organic horizon decomposition is 
regulated by factors such as the litter quality, microbial community 
composition and microbial biomass rather than mineral–organic 
interactions97. Given that fire can thermally alter the litter quality, 
reduce the microbial biomass and activity and shift key decomposer 
taxa such as fungi (Fig. 4 and references therein), fire is likely to 
have large effects on SOM turnover. By contrast, fire effects on SOM 
turnover in mineral soils will be lower and will probably depend 
on how much SOM is sorbed to the minerals98 and how plant-root 
traits impact the SOM stability59,60 to name but a few factors.

Fire management implications for nature-based climate 
solutions
Fire management strategies can impact the persistence of SOM and 
thus be used to promote C storage. For example, nature-based cli-
mate solutions aim to avoid ecosystem emissions and enhance C 
sequestration in both plants and soils99,100. While fire is generally 
treated as a liability to long-term C storage101, our literature review 
reveals a number of ways that fire could enhance the SOM stability 
(Fig. 5). Evidence from the literature suggests that prescribed burns 
could potentially lead to more stable SOM stocks via two mecha-
nisms: limiting the fuel amount to reduce the wildfire severity102 and 
thus the combustion-based losses of SOM during high-intensity 

wildfires; and/or by increasing the C stability in soil by impact-
ing the accessibility, interactions, recalcitrance and decomposer 
communities. The relative importance of these different processes 
differs across environments, requiring the implementation of man-
agement strategies that depend on the ecological context.

In ecosystems with deep organic horizons, such as boreal for-
ests and peatlands, the utility and feasibility of prescribed burn-
ing to manage SOM losses via greater stabilization is less clear. 
Low-intensity burning has been shown to reduce the decomposition 
of residual SOM, but this has received mixed support. Furthermore, 
it is unclear if lower decomposition offsets combustion-based 
losses (Fig. 5 and references therein). By contrast, prescribed 
burns can reduce wildfire severity by limiting fuel accumulation102. 
Consequently, using prescribed fire to reduce wildfire severity 
and the direct combustion of the organic horizon is likely to be an 
impactful way to protect standing stocks from future losses. In tem-
perate forests dominated by broadleaf or mixed tree species, there 
is a distinct litter layer, a high root biomass and a potential variabil-
ity in symbioses between plants and microbes. Studies suggest that 
low-intensity fire can be used to promote deep-rooted species and 
productive understory species as well as SOM condensation while 
minimizing combustion of the organic horizon (Fig. 5 and refer-
ences therein). In savannah-grasslands, combustion of an organic 
horizon is relatively non-existent, but fire-driven changes in root 
traits and symbiont strategy can impact the accessibility and inter-
actions components of stability (Fig. 4). Consequently, focusing on 
fire management in areas with high clay soils could bring the largest 
potential gains with a reduction in burning (Fig. 5).

Conclusions
Our review illustrates that fire has a multitude of impacts on SOM 
stability and that the effect of fire on the decomposition of SOM 
could be important for understanding the long-term changes in 
soil C storage and fluxes, which often cannot be reconciled by the 
changes in inputs alone. Consequently, a realignment of our focus 
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Fig. 5 | Stabilization dynamics differ across ecosystems and can inform fire management for nature-based climate solutions. Intense wildfires in boreal 
and permafrost systems (left) can result in high soil-burn severities by combusting SOM and increasing the active layer depth7,45,78,118. Low-intensity fires 
in these systems can increase chemical recalcitrance and lower the fuel biomass, limiting decomposition and wildfire severity84,110,119–122,103,104. Low-intensity 
fires in temperate deciduous and mixed forests (middle) can enrich aromatics and the soil pH, change aggregation, promote productive understory species 
and change the detritivore activity37,81. In savannahs (right), fire can be used to promote grasses and fine-rooted species, which can increase aggregate 
formation and interactions between organic matter and minerals, especially in areas with clay-rich soils and deep-rooted grasses31,59,60,117. Further empirical 
evidence for these processes is presented in the Supplementary Information. Figure adapted from an illustration by Stan Coffman.
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on biomass combustion to belowground processes like decomposi-
tion is needed if we are to reconcile the diversity of ways that fire 
affects soil C storage, and by doing so potentially reveal novel uses of 
fire to mitigate climate change when it increases the SOM stability.
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Extended Data Fig. 1 | Ecoregion distribution. Distribution of ecoregions used in the calculations for Table 1.
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