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ABSTRACT
One of society’s greatest challenges is sequestering vast amounts of carbon to avoid dangerous climate change without
driving competition for land and resources. Here we assess the potential of an integrated approach based on enhancement
of natural biogeochemical cycles in agro-ecosystems that stimulate carbon capture and storage while increasing resilience
and long-term productivity. The method integrates plant photosynthesis in the form of (cover) crops and agroforestry,
which drives carbon capture. Belowground plant-carbon is efficiently stored as stable soil organic carbon. Aboveground
crop and tree residues are pyrolyzed into biochar, which is applied to the soil reducing carbon release through decomposi-
tion. Enhanced weathering of basalt powder worked into the soil further captures and stores carbon, while releasing
nutrients and alkalinity. The integrated system is regenerative, through enhanced virtuous cycles that lead to improved
plant capture, biomass storage and crop yield, the prerequisites for large-scale carbon sequestration along with food
security.

Key words: carbon sequestration; regenerative agriculture; biochar; enhanced weathering; negative emissions; agro-ecosys-
tem; climate resilience.

INTRODUCTION
Human-induced climate change has significant adverse
impacts on our environment, economy and way of life.
Reductions of carbon dioxide emissions alone are no longer suf-
ficient to avoid dangerous impacts [1, 2], and capture plus long-
term storage of atmospheric carbon will be required.

Large-scale carbon sequestration is possible through a range
of options, each with its own advantages and drawbacks [3–7].
One family of methods centres on enhancing natural biogeo-
chemical processes. These techniques also called nature-based

solutions or geotherapy have positive environmental impacts
[3, 4, 7–9], and could (partly) pay for themselves by increasing
natural capital and agricultural productivity [6]. Examples in-
clude (i) boosting the growth of and standing carbon stock in
plants in cropping and pasture systems through cover- and
inter-cropping (e.g. agroforestry); (ii) re-establishing and/or en-
hancing soil organic carbon (SOC) stocks [10]; (iii) production of
biochar, which is plant biomass transformed at elevated tem-
peratures under oxygen-limited conditions (pyrolysis) into a re-
calcitrant form that withstands decomposition for many
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decades/centuries to possibly even millennia [11]; and (iv) in-
creasing the inorganic carbon sink in soils via Mg and Ca silicate
weathering by working finely ground rock (basalt) into soils [12].

The combined global carbon sequestration potential of such
measures has been estimated at 0.3–6.8 Gt C year!1 [13]. The po-
tential of each technique independently has been reported in
Smith et al. [13], who compiled the full range of literature
values:

1. Agroforestry: "0.03–1.55 Gt C year!1

2. Soil organic carbon sequestration (SOC): 0.14–1.36 Gt C
year!1

3. Biochar: 0.01–1.80 Gt C year!1

4. Enhanced rock (basalt) weathering: 0.14–1.1 Gt C year!1.

Large-scale carbon sequestration is an enormous challenge
in itself, and doing so without competition for land and resour-
ces among different carbon sequestration techniques and with
food production is an even greater one [14–16]. Here we evaluate
an integration of the aforementioned land-based carbon se-
questration techniques in agricultural systems on the same
land area (Fig. 1). This avoids competition for land and resour-
ces among drawdown methods, and further helps to build resil-
ient and regenerative agro-ecosystems. Importantly, we
contend that interactions between methods and with soil pro-
cesses can set up synergistic virtuous cycles that further en-
hance the potential for carbon sequestration. This study aims to
(i) discuss the key limitations of individual carbon sequestration
techniques by themselves, a prerequisite to maximize their po-
tential; (ii) assess interactions and synergies between the tech-
niques; and (iii) define conditions and strategies that allow for
integration and large-scale carbon sequestration in agro-eco-
systems .

DEFINITIONS AND KEY LIMITATIONS OF
INDIVIDUAL TECHNIQUES
Plants

Plants are the central players in the assessed land-based car-
bon sequestration system (Fig. 1). They capture CO2 and con-
vert it into sugars that are translocated throughout the plant
and soil. Eventually, plant carbon enters the soil from above-
ground litter, and from roots and their rhizodeposits (Fig. 2) .
Typically, practices that increase aboveground biomass also
accumulate SOC; plant productivity and the size of the SOC
pool are linked [22].

Globally, plant biomass accumulation is limited by nutrients
and water [23, 24]. Plant carbon can accumulate quickly, but the
system then starts to saturate [25] and the captured carbon di-
oxide can even be released, e.g. by fires, land-use change and
climate change (Table 1) [35]. If undisturbed, however, plant car-
bon (in the form of trees) is stable for >100 years [25], the typical
timescale for climate-change predictions [36].

Cover crops (the establishment of plants for the purpose of
protecting the soil) boost aboveground carbon stocks through-
out the year and can increase SOC stocks by 0.1–1 t ha!1 year!1

[37, 38]. Plant and soil carbon storage increases with plant
species-richness due to higher niche partitioning, and thus nu-
trient and water use efficiencies [39–41]. Adding trees to agricul-
tural land and consequently conversion of crop- and grassland
into agroforestry, a form of inter-cropping (the integration of at
least two plant species in the same area), can increase above-
ground biomass >10-fold and has been found to increase SOC
stocks by 25 and 19% globally, respectively [42, 43]. Agroforestry

operations can be established and maintained at costs of USD
0.3–20 t!1 CO2 (median USD 2.5 t!1 CO2) [26–29].

Soil organic carbon

Microorganisms degrade plant carbon (respiring CO2), but also
foster conversion into stable forms of SOC [44, 45] (Fig. 2a). Both
processes are affected by the activity, abundance and commu-
nity composition of microorganisms and are soil dependent
[46]. To achieve long-term sequestration of plant-derived car-
bon, a simple increase in total SOC content is insufficient.
Instead, an increase is needed in persistent SOC stocks, through
protection in soil microaggregates (aggregate occlusion), and/or
carbon-binding to clay and silt particles (mineral-associated
SOC/matrix stabilization) [22, 47]. Therefore, the soil needs to
possess sink strength in the form of available minerals or soil
aggregation to build stable SOC (Fig. 2). Aggregate protection
typically stabilizes SOC on decadal time scales, while mineral
matrix stabilization can protect SOC for centuries [47].

Similar to plant biomass, SOC levels reach saturation and
can be disturbed, e.g. through overgrazing, land-use change and
climate change [22, 25, 38, 44]. Besides biomass input and the
availability of sink strength, stable SOC accumulation depends
on the conversion efficiency of plant carbon into SOC, here de-
fined as the carbon sequestration efficiency (CSE) (Fig. 2), and
the rate of SOC degradation [48, 49]. The microbial growth effi-
ciency (carbon use efficiency) defines the proportion of plant
carbon that is converted into microbial biomass and stored, ver-
sus the proportion that is decomposed and released as CO2 via
heterotrophic respiration [49]. The microbial carbon can subse-
quently be stabilized into other forms of SOC (mineral-associ-
ated SOC mainly) [50]. Both processes combined make up the
CSE as defined here. In most agricultural systems, only a small
proportion of aboveground plant carbon is transformed into
(stable) SOC by biological processes; the CSE is low at only "8%
[17] reflected in Fig. 2a as 4% of the overall plant carbon stabi-
lized (8% of the 45% carbon as shoot biomass). Agricultural prac-
tise changes that increase SOC can be implemented at zero or
even negative costs [3].

Biochar

During biochar production (pyrolysis), biomass is heated in the
absence of oxygen, which directly converts the atmospheric car-
bon that was captured by plants into a form that is stable for
centuries [11] (Fig. 2b). The process results in an initial release of
"45% of the plant carbon stored in agricultural and forestry resi-
dues (mean over different temperatures) [51] and, hence, in
greater carbon emissions in the first few years of biochar pro-
duction, relative to regular biomass decomposition (negative
values in Fig. 3). However, over subsequent years, this is offset,
as further decomposition emissions are avoided, and net
carbon-negative conditions develop. The mean residence time
of biochar has been estimated at 500–1000 years, several orders
of magnitudes greater than that of unpyrolyzed biomass [52, 55,
56]. Assuming a "60 times lower degradation rate of biochar
than unpyrolyzed biomass [55], biomass pyrolysis becomes net
carbon negative after "3–5 years (Fig. 3).

Biochar use is limited by biomass feedstock availability and
processing costs. For example, it can be essential to leave crop res-
idues in the field to reduce soil erosion and evaporative losses in
water-limited regions [57]. In other cases, some (bioenergy) crop
and forestry residues are well suited for biochar production [58].
Globally, wheat, e.g. had annual grain yields of 0.4–9.4 t ha!1 in
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2019 (mean 3.3 t ha!1; range/mean of all countries listed in data-
base) [59]. With a typical harvest index of 0.5 (50% of biomass in
grain, 50% into stem and leaves) [60], 0.4–9.4 t ha!1 of wheat straw
residue is produced annually on-farm. Tree plantations can pro-
duce "10–100 t ha!1 of residue over a 30- to 40-year rotation,
equivalent to 0.25–3.3 t ha!1 year!1 [61–63]. The biochar yield from
woody and grass feedstocks is "25% on average across different
pyrolysis temperatures [19]. Hence, pyrolysis of wheat straw and
pine plantation residues produces 0.1–2.4 and 0.06–0.8 t ha!1

year!1 of biochar, respectively (mean 0.8 and 0.4 t ha!1 year!1).
We thus infer that limited on-site availability of biomass res-

idues in agriculture and neighbouring forestry systems will ini-
tially enable biochar application rate of "1 t ha!1 year!1, which
corresponds to 0.73 t C ha!1 year!1 at a mean biochar carbon
content of 73% [52]. To make more accurate assessments, alter-
native uses of residues need to be considered locally and bio-
mass availability (e.g. forestry sites) mapped to biochar use
(agricultural sites). Estimated CO2 abatement costs using bio-
char from forestry and agricultural residues are USD 50–300 t!1

CO2 (median USD 130 t!1 CO2), which includes costs for feed-
stock (either collection and transport costs on farm or commer-
cial price), biochar production and application [31–33, 59].

Basalt weathering

Enhanced weathering is the acceleration of the natural process
of rock dissolution by crushing Mg- and Ca-rich silicate rocks
before application to soil. During weathering, carbon dioxide is
captured and initially stored in the form of dissolved bicarbon-
ate (HCO3!). Further reactions convert the bicarbonate into Ca
and Mg carbonates, which deposit in the marine environment
where they remain sequestered for millennia [12]. Basalts are
the preferred rock types because they are rich in elements bene-
ficial to plant growth (P and K) and contain low concentrations
of elements potentially toxic for plants, such as Cr and Ni [12].

Actual basalt weathering rates and hence carbon drawdown
potential remain uncertain, depending strongly on particle size
(limited by grinding cost), climatic and soil conditions, and

Figure 1: Integration of four land-based carbon sequestration techniques on the same land area. Improved soil conditions (microorganisms, water, minerals/nutrients
and SOC content) boost plant growth. Addition of basalt and biochar can enhance a virtuous cycle of plant carbon capture and soil storage. Green symbolizes plant car-
bon flow, blue is the hydrological cycle
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biological activity [8, 64, 65]. Water flow is critical because min-
eral surfaces have to be in contact with water for the dissolution
reaction to take place, and disturbed for the reaction to continue
[66]. Therefore, wet and warm climates demonstrate the highest
weathering rates by far [67, 68].

Besides precipitation and runoff, soil hydrology plays a crucial
role in mineral weathering [69]. In all climate zones, heavy clays
and compacted soils will likely limit the dissolution rates of added
basalt severely due to low saturated hydraulic conductivity (poor

water flow through soil) and a prevalence of preferential water
flow pathways through cracks in soil that minimize interaction
with basalt minerals [70, 71]. Under natural conditions, flow in soil
generally affects only 0.1–10% of the soil matrix [72], so that most
of the available mineral surfaces cannot exchange solutes, which
limits dissolution. Poor contact between pore water and mineral
surfaces could explain the 2–3 orders of magnitude difference in
weathering rates that is measured in field (poor contact) versus
lab (maximum contact) experiments [70, 73].

Figure 2: Relative Carbon Sequestration Efficiency (CSE) of above- and belowground plant carbon into stable forms of soil carbon (MA-SOC, agg C, biochar). (a) Conventional
cropping systems, (b) system with plant shoot pyrolysis (þ biochar soil application) and management of microbial composition for maximum stable SOC accumulation, and
(c) system with mineral doping of feedstock before pyrolysis, microbial management, and improvements of soil properties through biochar and rock dust application, which
increases plant growth and photosynthesis. Size and shading of the stable carbon cylinders demonstrate the size of the carbon sink and level of saturation, with biochar hav-
ing unlimited sink strength. Green arrows represent photosynthesis, orange autotrophic respiration, red heterotrophic respiration and blue carbon stabilization pathways.
MA-SOC, mineral associated SOC; agg C, aggregate carbon. Percentage are example literature values presented for illustrative purposes, they vary according to the system un-
der investigation (soil, plant type, etc.): plant carbon allocation [10], conversion efficiency of plant litter and rhizodeposits into SOC [17], concept of increased CSE of rhizode-
posits into SOC (20% relative improvement assumed) [18], biochar CSE and improved CSE through mineral doping (mean across pyrolysis temperatures) [19], increase in SOC
storage capacity and CSE by biochar and basalt (combined relative CSE improvement of 20% assumed) [20, 21]
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Using sorghum plants and highly controlled experimental
conditions with constant irrigation (2330 mm year!1), drainage
and assuming permanent exposure of mineral surfaces to wa-
ter, basalt weathering rates were estimated to drive carbon se-
questration at 0.63–0.82 t C ha!1 year!1 for 100 t ha!1 basalt
application, using a reactive transport model [65]. This is equiv-
alent to around 10% of its total theoretical carbon sequestration
potential ("0.08 t C t!1 rock) [74]. Mesocosm studies with wheat
and barley, a precipitation of 800 mm year!1, and natural pro-
cesses such as drying cycles, preferential water flow and min-
eral precipitation, found the carbon sequestration potential of
olivine (more rapid theoretical weathering and more total se-
questration potential than basalt) to be much lower, 0.006–0.013
t C ha!1 year!1 at an application rate of 220 t ha!1 [64]. It con-
firms the discrepancy of rock weathering rates between con-
trolled lab conditions and natural conditions brought forward
by other authors [70, 73].

According to the rather limited body of existing studies, en-
hanced basalt weathering rates might be too low under realistic
field conditions (range of 0.01 t C ha!1 year!1) to sequester sig-
nificant amounts of carbon dioxide on a societally relevant time

scale ("100 years). Yet, modelling studies predict significant car-
bon capture potential in areas where hydrological and climate
conditions are suitable at costs of USD 50–200 t!1 CO2 (median
USD 160 t!1 CO2) [8, 34]. This highlights an urgent need for more
studies that assess mineral weathering in the field under realis-
tic conditions, and strategies to increase the weathering rate
(some of which are discussed in this article).

MECHANISTIC INTERACTIONS AND
SYNERGIES AMONG TECHNIQUES
Nutrient retention, availability and acquisition

Nutrient leaching and low nutrient use efficiency in agricultural
systems (Fig. 4a) are significant environmental and economic
issues. SOC has a very high cation exchange capacity (CEC), so
that building up SOC helps to retain positively charged
nutrients, such as Ca, Mg and K [75]. Biochar and basalt applica-
tion mainly affect the CEC in acidic soils through an increase in
soil pH, although the direct provision of negatively charged sur-
face sites may also have a positive influence [76–78].
Enrichment of biomass with inorganic nutrients before pyroly-
sis or application of biochar with nutrient-rich organic or inor-
ganic materials offers slow-nutrient release potential that
provides synergistic improvements on plant growth [19, 79–82].

A global meta-analysis demonstrated that 50% less N fertil-
izer (typically comprising positively charged ammonium and
negatively charged nitrate) was needed for wheat and maize
when the SOC content was increased from 0.5 to 1% [83]. Better
plant growth feeds more carbon into the soil, helping to build
SOC, which then supports further nutrient retention. Biochar
ageing could also help to retain nitrate [80]. Inter-cropping and
cover cropping increase N, P and micronutrient use efficiency,
while resource sharing of plants and mycorrhizal fungi facili-
tates nutrient acquisition, with positive effects on crop growth
[40, 41, 84, 85].

Plants and microorganisms can mine nutrients from (added)
basalt and hence increase nutrient availability and basalt
weathering rates by exudation of organic ligands, such as ace-
tate and propionate [86, 87]. These acids lower the reaction pH,
increasing the rate of dissolution, and can also precipitate and
form complexes with basalt dissolution products, which enable
further dissolution. In addition, uptake of already-dissolved

Table 1: Key attributes of four land-based carbon sequestration techniques

Attribute Plants (agroforestry) SOC Biochar Enhanced basalt
weathering

Carbon capture ! " " !

‘Permanent’ carbon se-
questration (>100
years)

!/"
Prone to perturbations

!/"
Prone to perturbations

! !

Saturation level ! ! " "

Main carbon sequestra-
tion limitations

Land area (nutrients, water) Biomass input, microbial
carbon conversion effi-
ciency, microbial SOC

decomposition

Biomass availability,
production costs

Weathering rate, grinding
and transport cost

Improvement of soil
properties

! ! ! !

Costs
(USD t!1 CO2)
[reference]

Range: 0.3–20
Median: 2.5

[26–29]

Zero or even negative
[3]

Range: 50–300
Median: 130

[30–33]

Range: 50–200
Median: 160

[8, 34]

Figure 3: Carbon storage over time in relative units comparing natural biomass
decomposition versus conversion into biochar. The black (dotted-dashed) line
shows the resulting biochar net carbon sequestration [53–55]
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nutrients by plants shifts reaction equilibria towards the prod-
ucts [86, 87]. In various studies plants increased rock weathering
rates by a factor of 1–10 compared with an unplanted control
[86, 88–91]. It highlights the effect biological activity can have on
basalt dissolution and the need to consider the entire plant–
soil–climate system to evaluate weathering rates and plant nu-
trient provision from basalt.

Soil hydraulic functions

Ideally, precipitation is captured in soil through rapid infiltra-
tion and high-water retention. Soil texture (particle size distri-
bution, sand–silt–clay content) has long been considered the
key factor in soil hydrology. In clay-rich soils, a low saturated
hydraulic conductivity restricts water infiltration and move-
ment within soil. In contrast, saturated hydraulic conductivity
is high but water retention is low in sandy soils. Modifying soil
texture is challenging because it needs very high application
rates of minerals, such as basalt [64].

Soil structure (aggregation) is likely to be at least as important
as soil texture for soil hydraulic functions [24, 92]. Increased SOC
content, root biomass and the abundance of soil organisms have
been correlated with high soil aggregation [92, 93]. Ca, often a sig-
nificant part of basalt, also facilitates soil aggregation and SOC
stabilization, in particular, in clay-rich soils (it reduces soil slak-
ing and dispersion) [94–96]. Therefore, accumulation of SOC and
basalt application can help water infiltration and retention.
Intercropping facilitates water use efficiency through comple-
mentary root architecture, enhanced soil aggregation and hy-
draulic lift, i.e. wicking of soil water from deep zones through

roots to drier, upper soil. These features can significantly boost
plant biomass and yields [40, 41, 97], which in turn helps build up
SOC, highlighting virtuous interactions.

Biochar application can likely change both soil texture via
biochar particle size and soil structure. Application of <30 t ha!1

of high surface-area biochar can increase hydraulic conductivity
in clay-rich soils [98]. While a cumulative biochar application of
10 t ha!1 over 5–10 years will only marginally increase the
plant-available water content of sandy soil, further application
to >30 t ha!1 is expected to substantially increase the water-
storage capacity [98].

More available water can increase plant growth, which in
turn helps to retain and re-circulate water locally (transpiration
instead of runoff) [99], and to improve the contact between wa-
ter and minerals and, hence, the mineral weathering rate.

Aboveground plant carbon sequestration efficiency

Producing biochar from aboveground plant residues in high-
biomass systems is key because it has a higher CSE than natural
biomass decomposition on a century timescale. Optimizing the
biochar production system for maximum (stable) carbon yield
decreases carbon losses further, and significantly improves the
CSE. The carbon sequestration potential of woody biochar per
unit biomass input can be increased by up to 45% by spraying
low levels (2%) of alkali (and earth alkaline) metals onto the bio-
mass, such as potassium or sodium [19], or by incorporating
wood ash [100] (Fig. 2c). A significant part of basalt comprises al-
kali and earth alkaline metals (Table 2) that could also have the
potential to catalyze biochar formation when incorporated into

Figure 4: Nutrient and water (a, b) and carbon dynamics (c, d) in agro-ecosystems. Panels (a, c) represent a conventional cropping system and (b, d) enhanced system
with land management options to maximize carbon sequestration and system resilience. In (a) soil holds fertiliser and water poorly. In (b) accumulation of SOC and
improved soil aggregation enables improved water retention and inter/cover cropping and basalt provide nutrients. (c) describes a conventional system where carbon
is provided to soil in the form of crop rhizodeposits and residues (litter) with most of the plant carbon lost as CO2. In (d) CO2 is captured by a diverse arrangement of
plants and through basalt weathering
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the biomass before pyrolysis, which in addition increases the
nutrient content of biochar, providing further benefits for plant
growth and carbon sequestration.

Biochar could be produced from biomass harvested from
matured agroforestry systems (Fig. 4d), which are estimated to
ultimately provide up to 10$ higher biomass yields than simple
cropping and pasture systems [43] with estimates ranging from
0.3 to 15 t C ha!1 [105]. Light limitation can cause tree growth to
decline with age, so that tree pruning and thinning stimulate
higher growth rates [106, 107]. The conversion of harvested ag-
roforestry residues (average "15% tree biomass pruning/thin-
ning assumed per year) into biochar could make 0.05–2.3 t ha!1

year!1 biomass available that supports the production of 0.01–
0.6 t ha!1 of biochar per year ("0.01–0.4 t C ha!1 year!1), which
is in addition to crop/forestry residue biochar. Other options to
obtain biomass for biochar production on-farm are setting aside
land for tree plantations [108] or fast-growing bioenergy crops,
harvesting woody weeds, which can yield up to 44 t ha!1 of bio-
mass [109], or increasing straw residues by planting crop varie-
ties with lower harvest indices.

Dividing aboveground tree and shrub residues from agrofor-
estry systems into N-rich green material and carbon-rich woody
debris could further increase the CSE and improves N manage-
ment (Fig. 4b and d). During pyrolysis, N is mostly lost or con-
verted into an unavailable form [110], so that only the N-poor
biomass fraction should be used for biochar production. Green,
N-rich biomass is (biologically) converted into SOC more effi-
ciently (higher CSE) than N-poor biomass [45, 48, 50], which
makes N-rich (composted) biomass ideal for building up SOC
and providing N to plants (Fig. 4b).

Importantly, more N is needed in the formation of mineral-
associated SOC, relative to less persistent forms of SOC (aggre-
gate carbon); more available N in soil increases SOC stability
[111]. Consequently, the SOC pool is typically higher and more
stable under N-rich plant species, e.g. legumes and N-fixing
trees, than under N-poor species, which highlights the value
of N-rich biomass as cover or inter crop [50, 112, 113] (Fig. 4b
and d).

Belowground plant CSE

Root biomass and rhizodeposition inject carbon deeper into
soils than the soil surface plant-litter pathway, and offer a more
efficient route for conversion into (stable) SOC (higher CSE)
("46% below ground in agricultural systems versus "8% above
ground; Fig. 2a highlights these pathways including carbon par-
titioning within the plant) [17, 114]. Further increase in the CSE
could be achieved through management of the soil microbial

community to increase the proportion of rhizodeposits that is
converted into stable SOC [18, 115] (Fig. 2b). ‘Deep carbon’ stocks
(>20 cm) are also less influenced by climate than near-surface
SOC, and so are less likely to be released in response to climate
change [116].

Crops (annual—one season—plants), however, only supply
belowground carbon within the first "100 days, with a sharp de-
cline after "30 days [10]. Perennials supply belowground carbon
(roots þ rhizodeposits) over the entire vegetation period at lev-
els equivalent to peak carbon supplies from annual crops.
Therefore, a constant plant cover in form of perennial cover
crops (living mulch), preferably a mix of legumes and non-
legumes, or intercrops (e.g. agroforestry) can provide a continu-
ous source of deep carbon, fostering both improved (stable) SOC
formation and increased plant yields [43, 85, 86]. Elevated rhizo-
deposit input, e.g. through cover crops, however, could also re-
sult in loss (priming) of existing SOC stocks under some
circumstances [117, 118]. Further investigation into locally opti-
mized practices is needed to achieve the best net outcomes.

Genetic selection of annual crops for increased below-
ground carbon allocation may also increase the stable SOC
pool [10, 17, 114]. Although in the short-term this can decrease
crop yields owing to diversion of plant energy from grain to be-
lowground mass, SOC levels up to 2% correlate positively with
crop yields, which demonstrates that building up SOC eventu-
ally results in a net agronomic advantage [84]. In addition, a
higher carbon allocation in rhizodeposits can result in en-
hanced nutrient supply from microorganisms, since rhizode-
posits directly feed microorganisms in exchange for nutrients
[119]. Nurturing healthy soils by investing energy and resour-
ces belowground will bring benefits that allow farming sys-
tems to maintain yields in a changing climate, in stark
contrast to a system purely focused on short-term optimiza-
tion of carbon allocation into grains (Fig. 1).

Longer-term SOC storage

Mineral-associated SOC storage depends on availability of ap-
propriate sink minerals. Saturation takes place when the store
of suitable minerals has been utilized, and leads to particularly
low CSEs in some soils [113, 120]. Basalt weathering supplies
abundant Ca, Mg, Al and Fe (Table 2) to the soil surface layer
providing mineral surfaces for the formation of mineral-
associated SOC, and improving soil aggregation (aggregate car-
bon) [45, 48, 96, 113] (Fig. 2c). Application of goethite (an Fe-rich
mineral) at 1.6 t ha!1 has been found to increase the CSE of rhi-
zodeposits [20]. Biochar application does not increase the min-
eral surface sink, but it can increase the conversion efficiency

Table 2: Elemental contents of basalts [101–104]

Element n Content (%) Dose in kg ha!1 at basalt application rate of 10 t ha!1

Mean SD Median Min Max Mean SD Median Min Max

Mg 64 3.7 1.1 3.5 1.8 7.0 370 110 350 180 700
Ca 64 5.3 1.1 5.4 1.5 7.6 530 110 540 150 760
K 64 0.7 0.6 0.6 0.2 4.3 70 60 60 20 430
P 64 0.2 0.1 0.2 0.1 0.5 20 10 20 10 50
Al 64 9.4 1.1 9.4 5.4 11.5 940 110 940 540 1150
Fe 64 5.6 2.5 6.6 1.0 9.3 560 250 660 100 930
CCE (%) 22 8 36 2200 800 3600

CCE, calcium carbonate equivalency (%) compares lime with lime replacements in their ability to alter soil pH, based on 40% Ca content in CaCO3.
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of rhizodeposits into mineral-associated SOC (higher CSE), de-
crease SOC degradation (negative priming) and foster the for-
mation of microaggregates that promote further SOC
stabilization [21] (Fig. 2c).

Biochar contains chemically and biologically recalcitrant
carbon [11] that does not easily degrade into low-molecular
weight hydrocarbons, the form in which SOC sorbs to and is
protected by minerals [51]. Therefore, removing carbon from
the natural plant-SOC-atmospheric CO2 cycle via pyrolysis
helps to avoid SOC saturation of mineral surfaces. In particular,
in regions with soils close to their maximum SOC storage capac-
ity, which reduces the CSE of plant litter into SOC [113], crop,
shrub and tree residues, should be pyrolyzed to avoid the re-
lease of existing SOC (positive priming) [50, 121] . Some of the
most fertile soils on the planet naturally have a (bio)char con-
tent of up to 50–80% of its soil carbon content [122, 123].

Biochar particles migrate into deeper soil horizons over
time, which reduces their vulnerability to decomposition and
further increases persistence [123, 124]. Eventually biochar can
leach through soil into groundwater and be transported via riv-
ers into the ocean [125, 126]. During this process biochar
remains stable [124]. In fact, (bio)char in rivers and marine sedi-
ments have a residence time of thousands of years [120, 127].
Therefore, the capacity to store carbon in the form of biochar in
the environment is likely unlimited (Table 1 and Fig. 2).

STRATEGIES FOR INTEGRATION IN AGRO-
ECOSYSTEMS
On a global scale, plant growth is limited by P and N, although K
can also limit productivity [23, 128]. N for crop growth can be
provided by microorganisms that live in natural symbiosis with
plants, but P, K and other nutrients are non-renewable and de-
pleted in many ecosystems [23, 128]. Basalts contain mineral
nutrients in relevant quantities to satisfy plant demand, and
therefore can (partly) replace conventional fertilizer application;
on average basalts from four continents contained 0.2% P, 0.7%
K, 5.3% Ca and 3.7% Mg (Table 2) [101–104].

Basalt application at 10 t ha!1 provides 10–50 kg P ha!1 and
20–430 kg K ha!1 (Table 2). Typical recommendations (depend-
ing on soil type, existing soil nutrients, etc.) are 40 kg P ha!1 and
133 kg K ha!1 for winter wheat, and 26 kg P ha!1 and 50 kg K
ha!1 for improved rice varieties [129]. This demonstrates that
basalts can theoretically supply sufficient K and P to compen-
sate for nutrients that are removed with the harvest. However,
not all of the K and P are immediately plant available [66, 78],
and further research is needed to establish basalt-based nutri-
ent supply in the short (immediate plant uptake), medium (one
growing season) and long term (several growing seasons).

Basalts (and biochar) also contain Ca and Mg that can neu-
tralize acidic soil [78, 130]. Biochar and rock dust application at
rates of 1 and 10 t ha!1, respectively, supply calcium carbonate
equivalent to 0.8–3.6 t ha!1 of lime; woody biochar provides
"0.06 t ha!1 [131] and basalt 0.8–3.6 t ha!1 (Table 2). At such pro-
posed application rates, the pH in soils of most textures and
CECs will likely increase to 5.5–6.5, the ideal pH for most plants
[132, 133]. Yet, the response of soil pH to biochar and basalt ap-
plication is slower than that to conventional lime addition be-
cause of a lower solubility [8, 134]. Still, silicate rocks can be a
sustainable lime replacement that avoids the CO2 emissions as-
sociated with lime production and application [135].

In semi-arid and arid areas rehydration strategies that sup-
ply water to plants will result in additional plant carbon and

SOC accumulation [136] and likely basalt weathering. Given that
severe droughts accelerated by climate change already affect
many areas around the world, and are predicted to intensify
and spread geographically [137], the development of efficient re-
hydration strategies will be key to climate change adaption and
ecosystem resilience. Such strategies cannot be overly reliant
on ponds/lakes/dams, given that shallow open waters with
large surface areas are subject to disproportionate evaporative
losses and can be a source of methane [138, 139]. Instead, inter-
ventions to improve water retention within soils are critical.

Biogeochemical interventions through strategic application of
biochar and basalt have the potential to spark virtuous cycles
that increase water use efficiency, plant growth and SOC accu-
mulation (Fig. 4b). In addition, cover cropping and landscape de-
sign through strategic tree planting, establishment of contour
lines and soil terraces increase water infiltration and slow down
the flow of water through the plant–soil system, and so help re-
hydrate the landscape [38, 40, 140, 141]. To enable significant ba-
salt weathering even under low water conditions, we propose
banded basalt application and landscape contouring to align wa-
ter flow with the buried basalt. This should be tested in future
studies. Yet, for example cover crops can increase water transpi-
ration losses and in some circumstances could result in de-
creased crop yield in semi-arid environments, which calls for
region-specific adaptation of practices [85, 142].

In our proposed method, increasing plant carbon capture
and growth in agricultural systems with (perennial) ground
cover and partial tree canopy cover is the first step (Fig. 1).
Improvements to water and nutrient supply enhance long-term
soil properties and plant growth. The extra plant biomass then
is managed through efficient conversion into biochar and
(other) stable SOC (Fig. 2c). This enables virtuous cycles that fur-
ther capture and storage water and carbon (Fig. 1).

OUTLOOK
Various unanswered issues arise as the key to future research
questions, such as the weathering rate and plant nutrient-
provision potential of basalt and the degree to which a specifi-
cally designed and regeneratively managed landscape can
increase water use efficiency. Field trials and demonstration
sites across climate and soil types are urgently needed to estab-
lish guidelines toward optimized carbon sequestration in pro-
ductive agro-ecosystems.

Even more importantly, gaps between disciplines need to be
bridged. First, to facilitate adoption of these concepts in practice,
novel soil models with measurable soil carbon pools [143, 144]
and improved representation of soil structure and associated hy-
drologic responses [26] need to be integrated into crop growth
models, and calibrated to local conditions. Prediction tools will in-
crease confidence in long-term sequestration benefits, which is
required to garner further support from industry, government
and farmers. Secondly, application of biochar and basalt in differ-
ent proportions and compositions needs to be incorporated into
the models and combined with techno-economic analyses and
decision-support tools. Detailed landscape mapping and analysis
will allow further fine-scale modelling of nutrient and water
flows and help in determining the ideal placement of trees and
establishment of rehydration strategies in water-limited environ-
ments. Such fine-scale modelling and adaptations in heteroge-
nous landscapes are essential for tailored approaches with
respect to local to regional scale soil and climate conditions,
which form the corner stone of successful implementations that
safeguard our climate, environment and food production.
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